RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation
- URL: http://arxiv.org/abs/2501.04315v2
- Date: Sat, 11 Jan 2025 18:17:46 GMT
- Title: RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation
- Authors: Jun Liu, Zhenglun Kong, Peiyan Dong, Changdi Yang, Xuan Shen, Pu Zhao, Hao Tang, Geng Yuan, Wei Niu, Wenbin Zhang, Xue Lin, Dong Huang, Yanzhi Wang,
- Abstract summary: Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning large language models.
We propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor.
RoRA ensures improved performance as rank size increases and excels in the more challenging task of accuracy recovery when fine-tuning pruned models.
- Score: 59.34193580856381
- License:
- Abstract: Fine-tuning helps large language models (LLM) recover degraded information and enhance task performance. Although Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning, we have observed that its scaling factor can limit or even reduce performance as the rank size increases. To address this issue, we propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor. By replacing $\alpha/r$ with $\alpha/\sqrt{r}$, RoRA ensures improved performance as rank size increases. Moreover, RoRA enhances low-rank adaptation in fine-tuning uncompressed models and excels in the more challenging task of accuracy recovery when fine-tuning pruned models. Extensive experiments demonstrate the effectiveness of RoRA in fine-tuning both uncompressed and pruned models. RoRA surpasses the state-of-the-art (SOTA) in average accuracy and robustness on LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B, specifically outperforming LoRA and DoRA by 6.5% and 2.9% on LLaMA-7B, respectively. In pruned model fine-tuning, RoRA shows significant advantages; for SHEARED-LLAMA-1.3, a LLaMA-7B with 81.4% pruning, RoRA achieves 5.7% higher average accuracy than LoRA and 3.9% higher than DoRA.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - GoRA: Gradient-driven Adaptive Low Rank Adaptation [11.937225965088963]
Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models.
We introduce GoRA (Gradient-driven Adaptive Low Rank Adaptation), which adaptively assigns ranks and initializes weights for low-rank adapters.
GoRA significantly improves performance while preserving the high usability and efficiency of LoRA.
arXiv Detail & Related papers (2025-02-13T10:33:58Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization [38.23587031169402]
We propose RoLoRA, the first LoRA-based scheme for effective weight-activation quantization.
We evaluate RoLoRA across LLaMA2-7B/13B, LLaMA3-8B models, achieving up to 29.5% absolute accuracy gain of 4-bit weight-activation quantized LLaMA2- 13B.
arXiv Detail & Related papers (2024-07-10T20:52:18Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs.
LoRA offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters.
LoRA converges at a considerably slower rate compared to full fine-tuning, leading to increased overall compute and often worse test performance.
arXiv Detail & Related papers (2024-07-06T08:37:21Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.