GoRA: Gradient-driven Adaptive Low Rank Adaptation
- URL: http://arxiv.org/abs/2502.12171v1
- Date: Thu, 13 Feb 2025 10:33:58 GMT
- Title: GoRA: Gradient-driven Adaptive Low Rank Adaptation
- Authors: Haonan He, Peng Ye, Yuchen Ren, Yuan Yuan, Lei Chen,
- Abstract summary: Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models.
We introduce GoRA (Gradient-driven Adaptive Low Rank Adaptation), which adaptively assigns ranks and initializes weights for low-rank adapters.
GoRA significantly improves performance while preserving the high usability and efficiency of LoRA.
- Score: 11.937225965088963
- License:
- Abstract: Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning pretrained large language models (LLMs), with its performance largely influenced by two key factors: rank and initialization strategy. Numerous LoRA variants have been proposed to enhance its performance by addressing these factors. However, these variants often compromise LoRA's usability or efficiency. In this paper, we analyze the fundamental limitations of existing methods and introduce a novel approach, GoRA (Gradient-driven Adaptive Low Rank Adaptation), which adaptively assigns ranks and initializes weights for low-rank adapters simultaneously based on gradient information. Extensive experimental results demonstrate that GoRA significantly improves performance while preserving the high usability and efficiency of LoRA. On the T5 model fine-tuned for the GLUE benchmark, GoRA achieves a 5.88-point improvement over LoRA and slightly surpasses full fine-tuning. Similarly, on the Llama3.1-8B-Base model fine-tuned for GSM8k tasks, GoRA outperforms LoRA with a 5.13-point improvement and exceeds full fine-tuning in high-rank settings by a margin of 2.05 points.
Related papers
- LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization [12.504723188498]
Large Language Models (LLMs) have achieved remarkable success in natural language processing.
Low-Rank Adaptation (LoRA) has emerged as a practical solution by approximating parameter updates with low-rank matrices.
LoRA-GGPO is a novel method that leverages gradient and weight norms to generate targeted perturbations.
arXiv Detail & Related papers (2025-02-20T13:14:41Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation [59.34193580856381]
Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning large language models.
We propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor.
RoRA ensures improved performance as rank size increases and excels in the more challenging task of accuracy recovery when fine-tuning pruned models.
arXiv Detail & Related papers (2025-01-08T07:13:52Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs.
LoRA offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters.
LoRA converges at a considerably slower rate compared to full fine-tuning, leading to increased overall compute and often worse test performance.
arXiv Detail & Related papers (2024-07-06T08:37:21Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
We extend the methodology of low-rank adaptation (LoRA) to an innovative approach we call allocating low-rank adaptation (ALoRA)
First, we propose a novel method, AB-LoRA, that can effectively estimate the importance score of each LoRA rank.
Second, guided by AB-LoRA, we gradually prune abundant and negatively impacting LoRA ranks and allocate the pruned LoRA budgets to important Transformer modules needing higher ranks.
arXiv Detail & Related papers (2024-03-24T15:09:55Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.