LoRA-GA: Low-Rank Adaptation with Gradient Approximation
- URL: http://arxiv.org/abs/2407.05000v2
- Date: Tue, 16 Jul 2024 07:32:23 GMT
- Title: LoRA-GA: Low-Rank Adaptation with Gradient Approximation
- Authors: Shaowen Wang, Linxi Yu, Jian Li,
- Abstract summary: Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs.
LoRA offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters.
LoRA converges at a considerably slower rate compared to full fine-tuning, leading to increased overall compute and often worse test performance.
- Score: 5.685201910521295
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs. LoRA, as one of the most popular Parameter-Efficient Fine-Tuning (PEFT) methods, offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters. Although LoRA reduces the computational and memory requirements significantly at each iteration, extensive empirical evidence indicates that it converges at a considerably slower rate compared to full fine-tuning, ultimately leading to increased overall compute and often worse test performance. In our paper, we perform an in-depth investigation of the initialization method of LoRA and show that careful initialization (without any change of the architecture and the training algorithm) can significantly enhance both efficiency and performance. In particular, we introduce a novel initialization method, LoRA-GA (Low Rank Adaptation with Gradient Approximation), which aligns the gradients of low-rank matrix product with those of full fine-tuning at the first step. Our extensive experiments demonstrate that LoRA-GA achieves a convergence rate comparable to that of full fine-tuning (hence being significantly faster than vanilla LoRA as well as various recent improvements) while simultaneously attaining comparable or even better performance. For example, on the subset of the GLUE dataset with T5-Base, LoRA-GA outperforms LoRA by 5.69% on average. On larger models such as Llama 2-7B, LoRA-GA shows performance improvements of 0.34, 11.52%, and 5.05% on MT-bench, GSM8K, and Human-eval, respectively. Additionally, we observe up to 2-4 times convergence speed improvement compared to vanilla LoRA, validating its effectiveness in accelerating convergence and enhancing model performance. Code is available at https://github.com/Outsider565/LoRA-GA.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - GoRA: Gradient-driven Adaptive Low Rank Adaptation [11.937225965088963]
Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models.
We introduce GoRA (Gradient-driven Adaptive Low Rank Adaptation), which adaptively assigns ranks and initializes weights for low-rank adapters.
GoRA significantly improves performance while preserving the high usability and efficiency of LoRA.
arXiv Detail & Related papers (2025-02-13T10:33:58Z) - RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation [59.34193580856381]
Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning large language models.
We propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor.
RoRA ensures improved performance as rank size increases and excels in the more challenging task of accuracy recovery when fine-tuning pruned models.
arXiv Detail & Related papers (2025-01-08T07:13:52Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Unlocking the Global Synergies in Low-Rank Adapters [20.32980343066711]
Low-rank Adaption (LoRA) has been the de-facto parameter-efficient fine-tuning technique for large language models.
We present HeteroLoRA, a light-weight search algorithm that leverages zero-cost proxies to allocate the limited LoRA trainable parameters.
Experiments show that HeteroLoRA enables improvements in model performance given the same parameter budge.
arXiv Detail & Related papers (2024-06-21T08:10:03Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.