論文の概要: TimelineKGQA: A Comprehensive Question-Answer Pair Generator for Temporal Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2501.04343v1
- Date: Wed, 08 Jan 2025 08:30:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:44.323960
- Title: TimelineKGQA: A Comprehensive Question-Answer Pair Generator for Temporal Knowledge Graphs
- Title(参考訳): TimelineKGQA: 時間的知識グラフのための総合的な質問応答ペアジェネレータ
- Authors: Qiang Sun, Sirui Li, Du Huynh, Mark Reynolds, Wei Liu,
- Abstract要約: 本稿では,タイムライン・コンテキスト関係に基づく新しい分類フレームワークを提案する。
textbfTimelineKGQAは任意のTKGに適用できる普遍的な時間的QAジェネレータである。
- 参考スコア(独自算出の注目度): 11.496509633886161
- License:
- Abstract: Question answering over temporal knowledge graphs (TKGs) is crucial for understanding evolving facts and relationships, yet its development is hindered by limited datasets and difficulties in generating custom QA pairs. We propose a novel categorization framework based on timeline-context relationships, along with \textbf{TimelineKGQA}, a universal temporal QA generator applicable to any TKGs. The code is available at: \url{https://github.com/PascalSun/TimelineKGQA} as an open source Python package.
- Abstract(参考訳): 時間的知識グラフ(TKG)に対する質問応答は、進化する事実や関係を理解する上で重要であるが、その開発は限られたデータセットとカスタムQAペアの生成の困難によって妨げられている。
我々は,任意のTKGに適用可能な汎用の時空間QA生成器である \textbf{TimelineKGQA} とともに,タイムラインとコンテキストの関係に基づく新しい分類フレームワークを提案する。
コードは以下の通りである。 \url{https://github.com/PascalSun/TimelineKGQA}はオープンソースのPythonパッケージである。
関連論文リスト
- Self-Improvement Programming for Temporal Knowledge Graph Question Answering [31.33908040172437]
時間的知識グラフ質問回答(TKGQA)は、時間的知識グラフ(TKG)に対する時間的意図で質問に答えることを目的としている。
既存のエンドツーエンドの手法は、質問や候補者の回答の埋め込みを学習することで、時間制約を暗黙的にモデル化する。
TKGQA(Prog-TQA)のための新しい自己改善プログラミング手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T08:14:27Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
テールエンティティのための特別なQAデータセットを生成するための自動アプローチを提案する。
我々は,新たに生成された長尾QAデータセットに事前学習したLLMを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-03T03:06:31Z) - Joint Multi-Facts Reasoning Network For Complex Temporal Question
Answering Over Knowledge Graph [34.44840297353777]
時間的知識グラフ(TKG)は、時間範囲をアタッチすることで、通常の知識グラフの拡張である。
textbfunderlineMulti textbfunderlineFacts textbfunderlineReasoning textbfunderlineNetwork (JMFRN)を提案する。
論文 参考訳(メタデータ) (2024-01-04T11:34:39Z) - Once Upon a $\textit{Time}$ in $\textit{Graph}$: Relative-Time
Pretraining for Complex Temporal Reasoning [96.03608822291136]
我々は時間の性質を生かし、時間軸に沿った事象の相対的な配置に基づくグラフ構造の構築を提案する。
グラフビューにインスパイアされたRemeMoを提案する。これは2つの文間の時間関係をモデル化することによって、時間的に観察されたすべての事実を明示的に接続する。
実験の結果、RemeMoは複数の時間的質問応答データセット上でベースラインT5よりも優れていた。
論文 参考訳(メタデータ) (2023-10-23T08:49:00Z) - TwiRGCN: Temporally Weighted Graph Convolution for Question Answering
over Temporal Knowledge Graphs [35.50055476282997]
時間的質問応答(QA)のための関係グラフ畳み込みネットワーク(RGCN)の一般化方法を示す。
コンボリューション中にKGエッジを通過するメッセージを変調する,新しい,直感的で解釈可能な方式を提案する。
TwiRGCN(TwiRGCN)と呼ばれる、複雑な時間的QAのための、最近リリースされた挑戦的データセットであるTimeQuestions(TimeQuestions)において、結果システムを評価する。
論文 参考訳(メタデータ) (2022-10-12T15:03:49Z) - ForecastTKGQuestions: A Benchmark for Temporal Question Answering and
Forecasting over Temporal Knowledge Graphs [28.434829347176233]
時間的知識グラフ(TKGQA)に対する質問応答の関心が高まっている。
TKGQAは時間的知識ベースから関連情報を抽出するために時間的推論技術を必要とする。
本稿では,時間的知識グラフを用いた質問応答の予測という新しい課題を提案する。
論文 参考訳(メタデータ) (2022-08-12T21:02:35Z) - TempoQR: Temporal Question Reasoning over Knowledge Graphs [11.054877399064804]
本稿では,知識グラフに関する複雑な疑問に答える包括的埋め込み型フレームワークを提案する。
提案手法は時間的問題推論(TempoQR)と呼ばれ、TKGの埋め込みを利用して、対象とする特定のエンティティや時間範囲に疑問を定めている。
実験の結果,TempoQRの精度は25~45ポイント向上した。
論文 参考訳(メタデータ) (2021-12-10T23:59:14Z) - Relation-Guided Pre-Training for Open-Domain Question Answering [67.86958978322188]
複雑なオープンドメイン問題を解決するためのRGPT-QA(Relation-Guided Pre-Training)フレームワークを提案する。
RGPT-QAは, 自然質問, TriviaQA, WebQuestionsにおいて, Exact Matchの精度が2.2%, 2.4%, 6.3%向上したことを示す。
論文 参考訳(メタデータ) (2021-09-21T17:59:31Z) - A Dataset for Answering Time-Sensitive Questions [88.95075983560331]
時間とは、我々の物理的世界において重要な次元である。多くの事実が時間に関して進化することができる。
時間次元を考慮し、既存のQAモデルに時間とともに推論する権限を与えることが重要です。
既存のQAデータセットには、時間に敏感な質問がほとんどないため、モデルの時間的推論能力の診断やベンチマークには適さない。
論文 参考訳(メタデータ) (2021-08-13T16:42:25Z) - Connecting the Dots: A Knowledgeable Path Generator for Commonsense
Question Answering [50.72473345911147]
本稿では、一般的な共通センスQAフレームワークを、知識のあるパスジェネレータで拡張する。
KGの既存のパスを最先端の言語モデルで外挿することで、ジェネレータはテキスト内のエンティティのペアを動的で、潜在的に新しいマルチホップリレーショナルパスに接続することを学びます。
論文 参考訳(メタデータ) (2020-05-02T03:53:21Z) - Semantic Graphs for Generating Deep Questions [98.5161888878238]
本稿では、まず、入力文書のセマンティックレベルグラフを構築し、次にアテンションベースのGGNN(Att-GGNN)を導入してセマンティックグラフを符号化する新しいフレームワークを提案する。
HotpotQAのDeep-question中心のデータセットでは、複数の事実の推論を必要とする問題よりもパフォーマンスが大幅に向上し、最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-04-27T10:52:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。