Online Gaussian Test-Time Adaptation of Vision-Language Models
- URL: http://arxiv.org/abs/2501.04352v1
- Date: Wed, 08 Jan 2025 08:49:52 GMT
- Title: Online Gaussian Test-Time Adaptation of Vision-Language Models
- Authors: Clément Fuchs, Maxime Zanella, Christophe De Vleeschouwer,
- Abstract summary: Online Gaussian Adaptation (OGA) is a novel method that models the likelihoods of visual features using Gaussian distributions.
We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs.
Our experimental study reveals that common OTTA evaluation protocols, which average performance over at most three runs per dataset, are inadequate due to the substantial variability observed across runs for all OTTA methods.
- Score: 13.90714913643503
- License:
- Abstract: Online test-time adaptation (OTTA) of vision-language models (VLMs) has recently garnered increased attention to take advantage of data observed along a stream to improve future predictions. Unfortunately, existing methods rely on dataset-specific hyperparameters, significantly limiting their adaptability to unseen tasks. In response, we propose Online Gaussian Adaptation (OGA), a novel method that models the likelihoods of visual features using Gaussian distributions and incorporates zero-shot priors into an interpretable Maximum A Posteriori (MAP) estimation framework with fixed hyper-parameters across all datasets. We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs. Additionally, we show that combining OTTA with popular few-shot techniques (a practical yet overlooked setting in prior research) is highly beneficial. Furthermore, our experimental study reveals that common OTTA evaluation protocols, which average performance over at most three runs per dataset, are inadequate due to the substantial variability observed across runs for all OTTA methods. Therefore, we advocate for more rigorous evaluation practices, including increasing the number of runs and considering additional quantitative metrics, such as our proposed Expected Tail Accuracy (ETA), calculated as the average accuracy in the worst 10% of runs. We hope these contributions will encourage more rigorous and diverse evaluation practices in the OTTA community. Code is available at https://github.com/cfuchs2023/OGA .
Related papers
- Sequence Generation Modeling for Continuous Value Prediction [35.33333441236041]
Continuous value prediction (CVP) plays a crucial role in short video recommendation, capturing user preferences through precise numerical estimations.
We introduce a novel Generative Regression framework for CVP inspired by sequence generation techniques in language modeling.
Our method transforms numerical values into token sequences through structural discretization, preserving original data fidelity while improving prediction precision.
arXiv Detail & Related papers (2024-12-28T16:48:55Z) - UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning [35.62208317531141]
We advocate and introduce the unrolling paradigm, also referred to as "learning to optimize"
Our unrolling approach covers various statistical feature distributions and pre-training paradigms.
We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks.
arXiv Detail & Related papers (2024-12-21T19:01:57Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - NUDGE: Lightweight Non-Parametric Fine-Tuning of Embeddings for Retrieval [0.7646713951724011]
Existing approaches either fine-tune the pre-trained model itself or, more efficiently, train adaptor models to transform the output of the pre-trained model.
We present NUDGE, a family of novel non-parametric embedding fine-tuning approaches.
NUDGE directly modifies the embeddings of data records to maximize the accuracy of $k$-NN retrieval.
arXiv Detail & Related papers (2024-09-04T00:10:36Z) - A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models [19.17722702457403]
We show that state-of-the-artETL approaches exhibit strong performance only in narrowly-defined experimental setups.
We propose a CLass-Adaptive linear Probe (CLAP) objective, whose balancing term is optimized via an adaptation of the general Augmented Lagrangian method.
arXiv Detail & Related papers (2023-12-20T02:58:25Z) - Better Practices for Domain Adaptation [62.70267990659201]
Domain adaptation (DA) aims to provide frameworks for adapting models to deployment data without using labels.
Unclear validation protocol for DA has led to bad practices in the literature.
We show challenges across all three branches of domain adaptation methodology.
arXiv Detail & Related papers (2023-09-07T17:44:18Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.