論文の概要: NSA: Neuro-symbolic ARC Challenge
- arxiv url: http://arxiv.org/abs/2501.04424v1
- Date: Wed, 08 Jan 2025 11:17:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:54.663030
- Title: NSA: Neuro-symbolic ARC Challenge
- Title(参考訳): NSA:ニューロシンボリックARCチャレンジ
- Authors: Paweł Batorski, Jannik Brinkmann, Paul Swoboda,
- Abstract要約: 本稿では,提案生成のためのトランスフォーマーとドメイン固有言語を用いた探索を組み合わせたニューロシンボリックアプローチを提案する。
変換器は,探索方向の提案により探索空間を狭め,探索を短時間で実際の解を見つけることができる。
その結果, ARC 評価値に比較して 27% の値を示し, ARC 列車の値と比較した。
- 参考スコア(独自算出の注目度): 15.132983458925244
- License:
- Abstract: The Abstraction and Reasoning Corpus (ARC) evaluates general reasoning capabilities that are difficult for both machine learning models and combinatorial search methods. We propose a neuro-symbolic approach that combines a transformer for proposal generation with combinatorial search using a domain-specific language. The transformer narrows the search space by proposing promising search directions, which allows the combinatorial search to find the actual solution in short time. We pre-train the trainsformer with synthetically generated data. During test-time we generate additional task-specific training tasks and fine-tune our model. Our results surpass comparable state of the art on the ARC evaluation set by 27% and compare favourably on the ARC train set. We make our code and dataset publicly available at https://github.com/Batorskq/NSA.
- Abstract(参考訳): The Abstraction and Reasoning Corpus (ARC)は、機械学習モデルと組合せ探索法の両方で難しい一般的な推論能力を評価する。
本稿では,提案生成のためのトランスフォーマーと,ドメイン固有言語を用いた組合せ探索を組み合わせたニューロシンボリックアプローチを提案する。
変換器は、有望な探索方向を提案して探索空間を狭め、組合せ探索を短時間で実際の解を見つけることができる。
我々は、合成されたデータで列車フォーマーを事前訓練する。
テスト期間中、追加のタスク固有のトレーニングタスクを生成し、モデルを微調整します。
その結果,ARC の27% に比較し,ARC の27% に比較した。
コードとデータセットをhttps://github.com/Batorskq/NSAで公開しています。
関連論文リスト
- ArchGym: An Open-Source Gymnasium for Machine Learning Assisted
Architecture Design [52.57999109204569]
ArchGymは、さまざまな検索アルゴリズムをアーキテクチャシミュレータに接続するオープンソースのフレームワークである。
我々は、カスタムメモリコントローラ、ディープニューラルネットワークアクセラレータ、AR/VRワークロード用のカスタムSOCを設計する際に、複数のバニラおよびドメイン固有の検索アルゴリズムにわたってArchGymを評価する。
論文 参考訳(メタデータ) (2023-06-15T06:41:23Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
once-for-All(OFA)は、異なるリソース制約を持つデバイスのための効率的なアーキテクチャを探索する問題に対処するために設計された、ニューラルネットワーク検索(NAS)フレームワークである。
我々は,探索段階を多目的最適化問題として明示的に考えることにより,効率の追求を一歩進めることを目指している。
論文 参考訳(メタデータ) (2023-03-23T21:30:29Z) - Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus [19.27379168184259]
ARC(Abstraction and Reasoning Corpus)は、汎用人工知能アルゴリズムのパフォーマンスをベンチマークすることを目的としている。
ARCは広範な一般化と少数ショットの学習に重点を置いているため、純粋な機械学習を使って解決することは不可能である。
本稿では,グラフを用いた画像の表現と,正しいプログラムの検索を行う新しいオブジェクト中心のフレームワークである,グラフ抽象化を用いた抽象推論を提案する。
論文 参考訳(メタデータ) (2022-10-18T14:13:43Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
そこで我々はParaformerと呼ばれる高速かつ高精度な並列トランスを提案する。
出力トークンの数を正確に予測し、隠れた変数を抽出する。
10倍以上のスピードアップで、最先端のARトランスフォーマーに匹敵するパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2022-06-16T17:24:14Z) - Connection Sensitivity Matters for Training-free DARTS: From
Architecture-Level Scoring to Operation-Level Sensitivity Analysis [32.94768616851585]
最近提案されたトレーニングフリーNAS手法は、トレーニングフェーズを放棄し、優れたアーキテクチャを識別するためのスコアとして、さまざまなゼロコストプロキシを設計する。
本稿では, DARTSにおける操作重要度を, パラメータ集中バイアスを回避して, トレーニング不要な方法で適切に測定できるか, という問題を提起する。
ZEROSをNASに活用するための反復的かつデータに依存しない手法を考案することにより、新しい試行は自由微分型アーキテクチャサーチ(FreeDARTS)と呼ばれるフレームワークに繋がる。
論文 参考訳(メタデータ) (2021-06-22T04:40:34Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
BossNAS(Block-wisely Self-supervised Neural Architecture Search)の紹介
探索空間をブロックに分類し、アンサンブルブートストラッピングと呼ばれる新しい自己教師型トレーニングスキームを用いて各ブロックを個別に訓練する。
また,検索可能なダウンサンプリング位置を持つファブリック型cnnトランスフォーマ検索空間であるhytra search spaceを提案する。
論文 参考訳(メタデータ) (2021-03-23T10:05:58Z) - Bootstrapping Relation Extractors using Syntactic Search by Examples [47.11932446745022]
非NLP専門家によって迅速に実行できるトレーニングデータセットのブートストラッププロセスを提案する。
フレンドリーなバイサンプル構文を公開する構文グラフよりも検索エンジンを利用する。
得られたモデルは,手作業による注釈付きデータや遠隔監視から得られたデータに基づいて訓練されたモデルと競合することを示す。
論文 参考訳(メタデータ) (2021-02-09T18:17:59Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
スパース符号問題としてニューラルアーキテクチャ探索を定式化する。
実験では、CIFAR-10の2段階法では、検索にわずか0.05GPUしか必要としない。
本手法は,CIFAR-10とImageNetの両方において,評価時間のみのコストで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-13T04:34:24Z) - CATCH: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search [102.67142711824748]
CATCHは、転送可能なarChitecture searcHのための、Context-bAsed meTa強化学習アルゴリズムである。
メタラーニングとRLの組み合わせにより、CATCHは検索空間に依存しないまま、新しいタスクに効率的に適応できる。
また、ImageNet、COCO、Cityscapesの競合ネットワークとしてクロスドメインアーキテクチャサーチを扱うこともできる。
論文 参考訳(メタデータ) (2020-07-18T09:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。