When LLMs Struggle: Reference-less Translation Evaluation for Low-resource Languages
- URL: http://arxiv.org/abs/2501.04473v1
- Date: Wed, 08 Jan 2025 12:54:05 GMT
- Title: When LLMs Struggle: Reference-less Translation Evaluation for Low-resource Languages
- Authors: Archchana Sindhujan, Diptesh Kanojia, Constantin Orasan, Shenbin Qian,
- Abstract summary: Segment-level quality estimation (QE) is a challenging cross-lingual language understanding task.
We comprehensively evaluate large language models (LLMs) in zero/few-shot scenarios.
Our results indicate that prompt-based approaches are outperformed by the encoder-based fine-tuned QE models.
- Score: 9.138590152838754
- License:
- Abstract: This paper investigates the reference-less evaluation of machine translation for low-resource language pairs, known as quality estimation (QE). Segment-level QE is a challenging cross-lingual language understanding task that provides a quality score (0-100) to the translated output. We comprehensively evaluate large language models (LLMs) in zero/few-shot scenarios and perform instruction fine-tuning using a novel prompt based on annotation guidelines. Our results indicate that prompt-based approaches are outperformed by the encoder-based fine-tuned QE models. Our error analysis reveals tokenization issues, along with errors due to transliteration and named entities, and argues for refinement in LLM pre-training for cross-lingual tasks. We release the data, and models trained publicly for further research.
Related papers
- Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning [0.4194295877935868]
This study investigates the effects of Low-Rank Adaptation (LoRA) -Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi.
Using a translated dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts.
arXiv Detail & Related papers (2024-11-27T18:14:38Z) - ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding [15.93642619347214]
We introduce proverbeval, LLM evaluation benchmark for low-resource languages.
Native language proverb descriptions significantly improve tasks such as proverb generation.
monolingual evaluations consistently outperformed their cross-lingual counterparts in generation tasks.
arXiv Detail & Related papers (2024-11-07T06:34:48Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
Large language models (LLMs) can achieve results comparable to fine-tuned multilingual pre-trained language models.
This paper explores what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate machine translation quality.
arXiv Detail & Related papers (2024-10-04T09:50:45Z) - MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators [53.91199933655421]
Large Language Models (LLMs) have shown significant potential as judges for Machine Translation (MT) quality assessment.
We introduce a universal and training-free framework, $textbfMQM-APE, based on the idea of filtering out non-impactful errors.
Experiments show that our approach consistently improves both the reliability and quality of error spans against GEMBA-MQM.
arXiv Detail & Related papers (2024-09-22T06:43:40Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task.
We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive.
arXiv Detail & Related papers (2024-01-12T13:23:21Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Translation Error Detection as Rationale Extraction [36.616561917049076]
We study the behaviour of state-of-the-art sentence-level QE models and show that explanations can indeed be used to detect translation errors.
We introduce a novel semi-supervised method for word-level QE and (ii) propose to use the QE task as a new benchmark for evaluating the plausibility of feature attribution.
arXiv Detail & Related papers (2021-08-27T09:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.