Integrating remote sensing data assimilation, deep learning and large language model for interactive wheat breeding yield prediction
- URL: http://arxiv.org/abs/2501.04487v1
- Date: Wed, 08 Jan 2025 13:14:05 GMT
- Title: Integrating remote sensing data assimilation, deep learning and large language model for interactive wheat breeding yield prediction
- Authors: Guofeng Yang, Nanfei Jin, Wenjie Ai, Zhonghua Zheng, Yuhong He, Yong He,
- Abstract summary: This study introduces a hybrid method and tool for crop yield prediction, designed to allow breeders to interactively and accurately predict wheat yield by chatting with a large language model (LLM)
The newly designed data assimilation algorithm is used to assimilate the leaf area index into the WOFOST model. Then, selected outputs from the assimilation process, along with remote sensing results, are used to drive the time-series temporal fusion transformer model for wheat yield prediction.
- Score: 6.955215132571773
- License:
- Abstract: Yield is one of the core goals of crop breeding. By predicting the potential yield of different breeding materials, breeders can screen these materials at various growth stages to select the best performing. Based on unmanned aerial vehicle remote sensing technology, high-throughput crop phenotyping data in breeding areas is collected to provide data support for the breeding decisions of breeders. However, the accuracy of current yield predictions still requires improvement, and the usability and user-friendliness of yield forecasting tools remain suboptimal. To address these challenges, this study introduces a hybrid method and tool for crop yield prediction, designed to allow breeders to interactively and accurately predict wheat yield by chatting with a large language model (LLM). First, the newly designed data assimilation algorithm is used to assimilate the leaf area index into the WOFOST model. Then, selected outputs from the assimilation process, along with remote sensing inversion results, are used to drive the time-series temporal fusion transformer model for wheat yield prediction. Finally, based on this hybrid method and leveraging an LLM with retrieval augmented generation technology, we developed an interactive yield prediction Web tool that is user-friendly and supports sustainable data updates. This tool integrates multi-source data to assist breeding decision-making. This study aims to accelerate the identification of high-yield materials in the breeding process, enhance breeding efficiency, and enable more scientific and smart breeding decisions.
Related papers
- Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.
By leveraging influence scores, we effectively identify the most impactful data for system improvement.
We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction [16.99449054451577]
We propose a new LSTM autoencoder-based model for barley genotype-to-phenotype prediction, specifically for flowering time and grain yield estimation.
Our model outperformed the other baseline methods, demonstrating its potential in handling complex high-dimensional agricultural datasets.
arXiv Detail & Related papers (2024-07-21T16:07:43Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Integrating processed-based models and machine learning for crop yield
prediction [1.3107669223114085]
In this work we investigate potato yield prediction using a hybrid meta-modeling approach.
A crop growth model is employed to generate synthetic data for (pre)training a convolutional neural net.
When applied in silico, our meta-modeling approach yields better predictions than a baseline comprising a purely data-driven approach.
arXiv Detail & Related papers (2023-07-25T12:51:25Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
We propose a pipeline to process remote sensing images into feature-based representations that allow the employment of Extreme Gradient Boosting (XGBoost) for yield prediction.
A comparative evaluation of soybean yield prediction within the United States shows promising prediction accuracies compared to state-of-the-art yield prediction systems based on Deep Learning.
arXiv Detail & Related papers (2022-08-26T12:48:18Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
In this paper, we focus on the reaction yield prediction problem.
We first put forth MetaRF, an attention-based differentiable random forest model specially designed for the few-shot yield prediction.
To improve the few-shot learning performance, we further introduce a dimension-reduction based sampling method.
arXiv Detail & Related papers (2022-08-22T06:40:13Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - An Applied Deep Learning Approach for Estimating Soybean Relative
Maturity from UAV Imagery to Aid Plant Breeding Decisions [7.4022258821325115]
We develop a robust and automatic approach for estimating the relative maturity of soybeans using a time series of UAV images.
An end-to-end hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) is proposed to extract features.
Results suggest the effectiveness of our proposed CNN-LSTM model compared to the local regression method.
arXiv Detail & Related papers (2021-08-02T14:53:58Z) - Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding
Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in
Breeding Applications [7.450586438835518]
The objective of this study is to develop a machine learning (ML) approach adept at soybean pod counting.
We developed a multi-view image-based yield estimation framework utilizing deep learning architectures.
Our results demonstrate the promise of ML models in making breeding decisions with significant reduction of time and human effort.
arXiv Detail & Related papers (2020-11-13T20:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.