論文の概要: Medical artificial intelligence toolbox (MAIT): an explainable machine learning framework for binary classification, survival modelling, and regression analyses
- arxiv url: http://arxiv.org/abs/2501.04547v1
- Date: Wed, 08 Jan 2025 14:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:55:23.831820
- Title: Medical artificial intelligence toolbox (MAIT): an explainable machine learning framework for binary classification, survival modelling, and regression analyses
- Title(参考訳): 医療人工知能ツールボックス(MAIT):バイナリ分類、生存モデリング、回帰分析のための説明可能な機械学習フレームワーク
- Authors: Ramtin Zargari Marandi, Anne Svane Frahm, Jens Lundgren, Daniel Dawson Murray, Maja Milojevic,
- Abstract要約: Medical Artificial Intelligence Toolbox (MAIT)は、バイナリ分類、回帰、サバイバルモデルの開発と評価のための、説明可能なオープンソースのPythonパイプラインである。
MAITは、レポートの透明性を促進しながら、重要な課題(例えば、高次元性、クラス不均衡、混合変数型、欠如)に対処する。
医療研究におけるMLモデルの実装と解釈を改善するために、MAITをどのように使用できるかを示すために、4つのオープンアクセスデータセットを使用して、GitHubで詳細なチュートリアルを提供している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While machine learning offers diverse techniques suitable for exploring various medical research questions, a cohesive synergistic framework can facilitate the integration and understanding of new approaches within unified model development and interpretation. We therefore introduce the Medical Artificial Intelligence Toolbox (MAIT), an explainable, open-source Python pipeline for developing and evaluating binary classification, regression, and survival models on tabular datasets. MAIT addresses key challenges (e.g., high dimensionality, class imbalance, mixed variable types, and missingness) while promoting transparency in reporting (TRIPOD+AI compliant). Offering automated configurations for beginners and customizable source code for experts, MAIT streamlines two primary use cases: Discovery (feature importance via unified scoring, e.g., SHapley Additive exPlanations - SHAP) and Prediction (model development and deployment with optimized solutions). Moreover, MAIT proposes new techniques including fine-tuning of probability threshold in binary classification, translation of cumulative hazard curves to binary classification, enhanced visualizations for model interpretation for mixed data types, and handling censoring through semi-supervised learning, to adapt to a wide set of data constraints and study designs. We provide detailed tutorials on GitHub, using four open-access data sets, to demonstrate how MAIT can be used to improve implementation and interpretation of ML models in medical research.
- Abstract(参考訳): 機械学習は様々な医学研究の問題を探索するのに適した多様な技術を提供するが、凝集的なシナジスティックフレームワークは統一されたモデル開発と解釈における新しいアプローチの統合と理解を促進することができる。
そこで我々は,2値分類,回帰,サバイバルモデルの開発と評価を行うための,説明可能なオープンソースのPythonパイプラインである医療人工知能ツールボックス(MAIT)を紹介した。
MAITは、レポートの透明性(TRIPOD+AI準拠)を促進しながら、重要な課題(例えば、高次元性、クラス不均衡、混合変数タイプ、欠如)に対処する。
初心者向けの自動設定とエキスパート向けのカスタマイズ可能なソースコードを提供するMAITは、ディスカバリ(統合スコアリング、SHapley Additive exPlanations - SHAP)と予測(最適化されたソリューションによるモデル開発とデプロイメント)の2つの主要なユースケースを合理化している。
さらに、二分分類における確率しきい値の微調整、累積ハザード曲線の二分分類への変換、混合データ型に対するモデル解釈の可視化の強化、半教師付き学習による検閲処理など、幅広いデータ制約や研究設計に対応する新しい手法を提案する。
医療研究におけるMLモデルの実装と解釈を改善するために、MAITをどのように使用できるかを示すために、4つのオープンアクセスデータセットを使用して、GitHubで詳細なチュートリアルを提供している。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - A Multimodal Automated Interpretability Agent [63.8551718480664]
MAIAは、ニューラルモデルを使用して、ニューラルモデル理解タスクを自動化するシステムである。
まず、画像の学習表現における(ニューロンレベルの)特徴を記述できるMAIAの能力を特徴付ける。
次に、MAIAは、刺激的な特徴に対する感度の低下と、誤分類される可能性のある入力を自動的に識別する2つの追加の解釈可能性タスクに役立てることができることを示す。
論文 参考訳(メタデータ) (2024-04-22T17:55:11Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems [0.0]
ScatterUQは、ユーザがコンテキスト駆動の不確実性設定におけるモデルパフォーマンスをよりよく理解できるように、ターゲットの可視化を提供するインタラクティブシステムである。
本稿では,Fashion-MNISTを訓練した距離認識ニューラルネットワーク上でのマルチクラス画像分類におけるモデル不確実性を説明するために,ScatterUQの有効性を示す。
以上の結果から,ScatterUQシステムは任意のマルチクラスデータセットにスケールすべきであることが示唆された。
論文 参考訳(メタデータ) (2023-08-08T21:17:03Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning [0.0]
モデル学習ループに人的専門家を取り入れることで、モデル学習を加速し、解釈可能性を向上させるMLフレームワークを検討する。
本稿では,データアノテーションのコストが高い学習問題に対処することを目的とした,新たなヒューマン・イン・ザ・ループMLフレームワークを提案する。
精度測定への応用により,本手法はデータから解釈可能なルールを学習し,専門家の作業負荷を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-28T03:45:09Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Visualisation and knowledge discovery from interpretable models [0.0]
欠落した値も扱える本質的な解釈可能なモデルをいくつか紹介する。
合成データセットと実世界のデータセットでアルゴリズムを実証した。
論文 参考訳(メタデータ) (2020-05-07T17:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。