Resilient Peer-to-peer Learning based on Adaptive Aggregation
- URL: http://arxiv.org/abs/2501.04610v1
- Date: Wed, 08 Jan 2025 16:47:45 GMT
- Title: Resilient Peer-to-peer Learning based on Adaptive Aggregation
- Authors: Chandreyee Bhowmick, Xenofon Koutsoukos,
- Abstract summary: Collaborative learning in peer-to-peer networks offers the benefits of learning while mitigating single points of failure.
adversarial workers pose potential threats by attempting to inject malicious information into the network.
This paper introduces a resilient aggregation technique aimed at fostering similarity learning processes.
- Score: 0.5530212768657544
- License:
- Abstract: Collaborative learning in peer-to-peer networks offers the benefits of distributed learning while mitigating the risks associated with single points of failure inherent in centralized servers. However, adversarial workers pose potential threats by attempting to inject malicious information into the network. Thus, ensuring the resilience of peer-to-peer learning emerges as a pivotal research objective. The challenge is exacerbated in the presence of non-convex loss functions and non-iid data distributions. This paper introduces a resilient aggregation technique tailored for such scenarios, aimed at fostering similarity among peers' learning processes. The aggregation weights are determined through an optimization procedure, and use the loss function computed using the neighbor's models and individual private data, thereby addressing concerns regarding data privacy in distributed machine learning. Theoretical analysis demonstrates convergence of parameters with non-convex loss functions and non-iid data distributions. Empirical evaluations across three distinct machine learning tasks support the claims. The empirical findings, which encompass a range of diverse attack models, also demonstrate improved accuracy when compared to existing methodologies.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
We mounted adversarial attacks on a federated learning (FL) environment using three different datasets.
The attacks leveraged generative adversarial networks (GANs) to affect the learning process.
We reconstructed the real data of the victim from the shared global model parameters with all the applied datasets.
arXiv Detail & Related papers (2021-08-02T08:12:43Z) - Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors [0.0]
Extreme learning machines provide an attractive and efficient method for supervised learning under limited computing ressources and green machine learning.
Results are discussed about supervised learning with such networks and regression methods in terms of consistency and bounds for the generalization and prediction error.
arXiv Detail & Related papers (2021-01-06T12:28:06Z) - Byzantine Resilient Distributed Multi-Task Learning [6.850757447639822]
We show that distributed algorithms for learning relatedness among tasks are not resilient in the presence of Byzantine agents.
We propose an approach for Byzantine resilient distributed multi-task learning.
arXiv Detail & Related papers (2020-10-25T04:32:52Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.