論文の概要: FlairGPT: Repurposing LLMs for Interior Designs
- arxiv url: http://arxiv.org/abs/2501.04648v1
- Date: Wed, 08 Jan 2025 18:01:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:35.764678
- Title: FlairGPT: Repurposing LLMs for Interior Designs
- Title(参考訳): FlairGPT:内部設計のためのLLMの再利用
- Authors: Gabrielle Littlefair, Niladri Shekhar Dutt, Niloy J. Mitra,
- Abstract要約: 大規模言語モデル (LLM) が内部設計に直接活用できるかどうかを検討する。
LLMを体系的に探索することにより、関連する制約とともにオブジェクトのリストを確実に生成できる。
この情報を設計レイアウトグラフに変換し、オフザシェルフ制約最適化設定を用いて解決する。
- 参考スコア(独自算出の注目度): 26.07841568311428
- License:
- Abstract: Interior design involves the careful selection and arrangement of objects to create an aesthetically pleasing, functional, and harmonized space that aligns with the client's design brief. This task is particularly challenging, as a successful design must not only incorporate all the necessary objects in a cohesive style, but also ensure they are arranged in a way that maximizes accessibility, while adhering to a variety of affordability and usage considerations. Data-driven solutions have been proposed, but these are typically room- or domain-specific and lack explainability in their design design considerations used in producing the final layout. In this paper, we investigate if large language models (LLMs) can be directly utilized for interior design. While we find that LLMs are not yet capable of generating complete layouts, they can be effectively leveraged in a structured manner, inspired by the workflow of interior designers. By systematically probing LLMs, we can reliably generate a list of objects along with relevant constraints that guide their placement. We translate this information into a design layout graph, which is then solved using an off-the-shelf constrained optimization setup to generate the final layouts. We benchmark our algorithm in various design configurations against existing LLM-based methods and human designs, and evaluate the results using a variety of quantitative and qualitative metrics along with user studies. In summary, we demonstrate that LLMs, when used in a structured manner, can effectively generate diverse high-quality layouts, making them a viable solution for creating large-scale virtual scenes. Project webpage at https://flairgpt.github.io/
- Abstract(参考訳): 内部設計は、クライアントの設計を簡潔に整合させる美的な、機能的で調和した空間を作るために、オブジェクトの選択と配置を慎重に行う。
この課題は、設計が成功するためには、必要なすべてのオブジェクトを結合的なスタイルに組み込むだけでなく、アクセシビリティを最大化しながら、さまざまな可利用性や使用性を考慮して配置する必要があるため、特に困難である。
データ駆動型ソリューションが提案されているが、それらは通常、部屋やドメイン固有のものであり、最終的なレイアウトを作成する際に使用される設計上の考慮事項に説明責任がない。
本稿では,大規模言語モデル (LLM) が内部設計に直接活用できるかどうかを検討する。
LLMはまだ完全なレイアウトを生成できないが、内部設計者のワークフローに触発されて、構造的に効果的に活用できる。
LLMを体系的に探索することにより、それらの配置をガイドする関連する制約とともに、オブジェクトのリストを確実に生成できる。
この情報を設計レイアウトグラフに変換し,既定の制約付き最適化設定を用いて最終レイアウトを生成する。
提案アルゴリズムは,既存のLCM法や人体設計に対して,様々な設計構成でベンチマークを行い,様々な量的,質的な指標とユーザスタディを用いた評価を行った。
要約すると、LLMは構造化された方法で使用すれば、多種多様な高品質なレイアウトを効果的に生成できることを示し、大規模な仮想シーンを作成するためのソリューションとなる。
Project webpage at https://flairgpt.github.io/
関連論文リスト
- GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
コンテンツ対応のテキストロゴレイアウトを生成するVLMベースのフレームワークを提案する。
本稿では,複数のグリフ画像の同時処理における計算量を削減するための2つのモデル手法を提案する。
アウトモデルのインストラクションチューニングを支援するために,既存の公開データセットよりも5倍大きい2つの拡張テキストロゴデータセットを構築した。
論文 参考訳(メタデータ) (2024-11-18T10:04:10Z) - Optimizing Token Usage on Large Language Model Conversations Using the Design Structure Matrix [49.1574468325115]
大規模言語モデルは、多くの分野やタスクにおいてユビキタスになる。
トークンの使用を減らすこと、短いコンテキストウィンドウ、限られた出力サイズ、トークンの取り込みと生成に関連するコストといった課題を克服する必要がある。
この作業は、エンジニアリング設計の分野からLLM会話最適化にデザイン構造マトリックスをもたらす。
論文 参考訳(メタデータ) (2024-10-01T14:38:36Z) - LLplace: The 3D Indoor Scene Layout Generation and Editing via Large Language Model [58.24851949945434]
LLplace は軽量な微調整のオープンソース LLM Llama3 に基づく新しい3D屋内シーンレイアウトデザイナである。
LLplaceは、空間的関係の先行とコンテキスト内例の必要性を回避し、効率的で信頼性の高い部屋レイアウト生成を可能にする。
提案手法は,高品質な3D設計ソリューションを実現する上で,LLplaceがインタラクティブに3D屋内レイアウトを効果的に生成・編集できることを示す。
論文 参考訳(メタデータ) (2024-06-06T08:53:01Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は,ユーザのデザイン意図に基づいて編集可能なポスターを生成する自動テキスト投稿システムを開発した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - How Can Large Language Models Help Humans in Design and Manufacturing? [28.28959612862582]
GPT-4を含む大規模言語モデル(LLM)は、生成設計にエキサイティングな新しい機会を提供する。
テキストベースのプロンプトを設計仕様に変換すること、設計を設計指示に変換すること、設計空間と設計のバリエーションを作り出すこと、設計の性能を計算し、性能を規定した設計を探すこと、などである。
これらの制限を明らかにすることで、これらのモデルの継続的な改善と進歩を触媒することを目指しています。
論文 参考訳(メタデータ) (2023-07-25T17:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。