論文の概要: How Can Large Language Models Help Humans in Design and Manufacturing?
- arxiv url: http://arxiv.org/abs/2307.14377v1
- Date: Tue, 25 Jul 2023 17:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 17:18:05.951208
- Title: How Can Large Language Models Help Humans in Design and Manufacturing?
- Title(参考訳): 大規模言語モデルは設計と製造にどのように役立つか?
- Authors: Liane Makatura, Michael Foshey, Bohan Wang, Felix H\"ahnLein,
Pingchuan Ma, Bolei Deng, Megan Tjandrasuwita, Andrew Spielberg, Crystal
Elaine Owens, Peter Yichen Chen, Allan Zhao, Amy Zhu, Wil J Norton, Edward
Gu, Joshua Jacob, Yifei Li, Adriana Schulz, Wojciech Matusik
- Abstract要約: GPT-4を含む大規模言語モデル(LLM)は、生成設計にエキサイティングな新しい機会を提供する。
テキストベースのプロンプトを設計仕様に変換すること、設計を設計指示に変換すること、設計空間と設計のバリエーションを作り出すこと、設計の性能を計算し、性能を規定した設計を探すこと、などである。
これらの制限を明らかにすることで、これらのモデルの継続的な改善と進歩を触媒することを目指しています。
- 参考スコア(独自算出の注目度): 28.28959612862582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of Large Language Models (LLMs), including GPT-4, provides
exciting new opportunities for generative design. We investigate the
application of this tool across the entire design and manufacturing workflow.
Specifically, we scrutinize the utility of LLMs in tasks such as: converting a
text-based prompt into a design specification, transforming a design into
manufacturing instructions, producing a design space and design variations,
computing the performance of a design, and searching for designs predicated on
performance. Through a series of examples, we highlight both the benefits and
the limitations of the current LLMs. By exposing these limitations, we aspire
to catalyze the continued improvement and progression of these models.
- Abstract(参考訳): GPT-4を含むLLM(Large Language Models)の進歩は、生成設計にエキサイティングな新しい機会をもたらす。
設計および製造ワークフロー全体にわたるこのツールの適用について検討する。
具体的には,テキストベースのプロンプトを設計仕様に変換する,設計を製造手順に変換する,設計スペースと設計バリエーションを生成する,設計のパフォーマンスを計算する,パフォーマンスに先行する設計を探索する,といったタスクにおけるllmの有用性を精査する。
一連の例を通して、現在のLLMの利点と限界の両方を強調します。
これらの制限を明らかにすることで、これらのモデルの継続的な改善と進歩を触媒することを目指している。
関連論文リスト
- Optimizing Token Usage on Large Language Model Conversations Using the Design Structure Matrix [49.1574468325115]
大規模言語モデルは、多くの分野やタスクにおいてユビキタスになる。
トークンの使用を減らすこと、短いコンテキストウィンドウ、限られた出力サイズ、トークンの取り込みと生成に関連するコストといった課題を克服する必要がある。
この作業は、エンジニアリング設計の分野からLLM会話最適化にデザイン構造マトリックスをもたらす。
論文 参考訳(メタデータ) (2024-10-01T14:38:36Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は、大規模な実験を行い、パブリックなマルチモーダルレイアウト生成ベンチマーク上で、最先端(SOTA)性能を達成した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
グラフィックデザインでは、プロでないユーザは、限られたスキルとリソースのために視覚的に魅力的なレイアウトを作成するのに苦労することが多い。
レイアウト計画のための新しいマルチモーダル・インストラクション・フォロー・フレームワークを導入し、視覚的要素をカスタマイズしたレイアウトに簡単に配置できるようにする。
本手法は,非専門職の設計プロセスを単純化するだけでなく,数ショット GPT-4V モデルの性能を上回り,mIoU は Crello で 12% 向上する。
論文 参考訳(メタデータ) (2024-04-23T17:58:33Z) - DesignProbe: A Graphic Design Benchmark for Multimodal Large Language Models [35.10231741092462]
精巧なグラフィックデザインは、きめ細かいデザイン要素(色、フォント、レイアウト)から全体的なデザインまで、2段階の調和を実現するのが一般的である。
MLLM(Multimodal Large Language Models)の急速な開発に伴い,設計におけるMLLMの能力を調べるためのベンチマークであるDesignProbeを確立する。
論文 参考訳(メタデータ) (2024-04-23T07:31:19Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Zero-Shot RTL Code Generation with Attention Sink Augmented Large
Language Models [0.0]
本稿では,大規模言語モデルを利用したハードウェア設計におけるコード生成プロセスの合理化の可能性について論じる。
RTLコード生成で大きな言語モデルを使用する能力は、設計サイクルを高速化するだけでなく、設計空間の探索を促進する。
論文 参考訳(メタデータ) (2024-01-12T17:41:38Z) - From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design [5.268919870502001]
本稿では,視覚言語モデル(VLM)を工学設計タスクの範囲で総合的に評価する。
本稿では, スケッチ類似性解析, CAD生成, トポロジ最適化, 製造性評価, 工学教科書問題などの設計課題における2つのVLM, GPT-4V, LLaVA 1.6 34Bの性能評価を行う。
論文 参考訳(メタデータ) (2023-11-21T15:20:48Z) - Representation Learning for Sequential Volumetric Design Tasks [11.702880690338677]
本稿では,設計知識を専門家や高性能な設計シーケンスの集合から符号化することを提案する。
学習した表現の密度を推定して選好モデルを開発する。
逐次設計生成のための自己回帰変換モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-05T21:21:06Z) - Deep Generative Models in Engineering Design: A Review [1.933681537640272]
本稿では,工学設計におけるDeep Generative Learningモデルのレビューと分析を行う。
最近のDGMは、構造最適化、材料設計、形状合成といった設計応用において有望な結果を示している。
論文 参考訳(メタデータ) (2021-10-21T02:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。