Broadband electron paramagnetic resonance spectroscopy of $^{167}$Er:$^{7}$LiYF$_4$ at mK temperatures
- URL: http://arxiv.org/abs/2501.04657v2
- Date: Thu, 09 Jan 2025 15:40:39 GMT
- Title: Broadband electron paramagnetic resonance spectroscopy of $^{167}$Er:$^{7}$LiYF$_4$ at mK temperatures
- Authors: Ana Strinic, Patricia Oehrl, Achim Marx, Pavel A. Bushev, Hans Huebl, Rudolf Gross, Nadezhda Kukharchyk,
- Abstract summary: Rare-earth spin ensembles are a promising platform for microwave quantum memory applications.
By fitting the spin Hamiltonian to the zero-field spectrum, we obtain refined parameters of the magnetic field-independent interactions.
We also study the influence of the quadrupole interaction on the hyperfine splitting in the zero and low magnetic field range.
- Score: 0.0
- License:
- Abstract: Rare-earth spin ensembles are a promising platform for microwave quantum memory applications due to their hyperfine transitions, which can exhibit exceptionally long coherence times when using an operation point with zero first-order Zeeman (ZEFOZ) shift. In this work, we use broadband electron paramagnetic resonance (EPR) spectroscopy on $^{167}$Er:$^{7}$LiYF$_4$ single crystals at sub-Kelvin temperatures. By fitting the spin Hamiltonian to the zero-field spectrum, we obtain refined parameters of the magnetic field-independent interactions, such as the hyperfine and quadrupole interaction. We also study the influence of the quadrupole interaction on the hyperfine splitting in the zero and low magnetic field range by analyzing EPR-spectra between 0 mT and 50 mT. Our findings highlight the broadband EPR spectroscopy approach as a powerful tool for the precise determination of the spin Hamiltonian parameters and for the characterization of hyperfine transitions in terms of their selection rules and linewidth.
Related papers
- Decoherence induced by dipole-dipole couplings between atomic species in rare-earth ion-doped Y$_2$SiO$_5$ [0.0]
We investigate the relationship between the magnetic field parameters and the decoherence caused by magnetic dipole-dipole coupling.
This work allows us to pinpoint the most relevant decoherence mechanisms in the considered magnetic field regime.
arXiv Detail & Related papers (2024-08-04T08:26:03Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - High-resolution spectroscopy of a single nitrogen-vacancy defect at zero
magnetic field [0.3848364262836075]
We report a study of high-resolution microwave spectroscopy of nitrogen-vacancy centers in diamond crystals at and around zero magnetic field.
We observe characteristic splitting and transition imbalance of the hyperfine transitions, which originate from level anti-crossings in the presence of a transverse effective field.
Our results are of importance for the optimization of the experimental conditions for the polarization-selective microwave excitation of spin-1 systems in zero or weak magnetic fields.
arXiv Detail & Related papers (2022-06-30T02:49:49Z) - Spectroscopic characterization of singlet-triplet doorway states of
aluminum monofluoride [0.0]
We present a hyperfine resolved spectroscopic study of the A$1Pi, v=6$ // b$3Sigma+, v=5$ system in a jet-cooled, pulsed molecular beam.
The measured lifetimes range between 2 ns and 200 ns, determined by the degree of singlet-triplet mixing for each level.
arXiv Detail & Related papers (2022-02-16T08:13:35Z) - Measurement of the Thulium Ion Spin Hamiltonian Within a Yttrium Gallium
Garnet Host Crystal [0.0]
We characterize the magnetic properties for thulium ion energy levels in the Y$_3$Ga$_5$O$_12$ lattice.
By rotating the sample through a series of angles with an applied external magnetic field, we measure and analyze the orientation dependence of the Tm$3+$ ion's spin-Hamiltonian.
arXiv Detail & Related papers (2021-07-19T14:33:46Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear
spin qudit [0.0]
We show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit.
These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities.
arXiv Detail & Related papers (2021-01-27T19:12:23Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.