SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
- URL: http://arxiv.org/abs/2501.04689v1
- Date: Wed, 08 Jan 2025 18:52:03 GMT
- Title: SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
- Authors: Zixuan Huang, Mark Boss, Aaryaman Vasishta, James M. Rehg, Varun Jampani,
- Abstract summary: We study the problem of single-image 3D object reconstruction.
Recent works have diverged into two directions: regression-based modeling and generative modeling.
We present SPAR3D, a novel two-stage approach aiming to take the best of both directions.
- Score: 49.7344030427291
- License:
- Abstract: We study the problem of single-image 3D object reconstruction. Recent works have diverged into two directions: regression-based modeling and generative modeling. Regression methods efficiently infer visible surfaces, but struggle with occluded regions. Generative methods handle uncertain regions better by modeling distributions, but are computationally expensive and the generation is often misaligned with visible surfaces. In this paper, we present SPAR3D, a novel two-stage approach aiming to take the best of both directions. The first stage of SPAR3D generates sparse 3D point clouds using a lightweight point diffusion model, which has a fast sampling speed. The second stage uses both the sampled point cloud and the input image to create highly detailed meshes. Our two-stage design enables probabilistic modeling of the ill-posed single-image 3D task while maintaining high computational efficiency and great output fidelity. Using point clouds as an intermediate representation further allows for interactive user edits. Evaluated on diverse datasets, SPAR3D demonstrates superior performance over previous state-of-the-art methods, at an inference speed of 0.7 seconds. Project page with code and model: https://spar3d.github.io
Related papers
- Robust 3D Point Clouds Classification based on Declarative Defenders [18.51700931775295]
3D point clouds are unstructured and sparse, while 2D images are structured and dense.
In this paper, we explore three distinct algorithms for mapping 3D point clouds into 2D images.
The proposed approaches demonstrate superior accuracy and robustness against adversarial attacks.
arXiv Detail & Related papers (2024-10-13T01:32:38Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Sampling 3D Gaussian Scenes in Seconds with Latent Diffusion Models [3.9373541926236766]
We present a latent diffusion model over 3D scenes, that can be trained using only 2D image data.
We show that our approach enables generating 3D scenes in as little as 0.2 seconds, either from scratch, or from sparse input views.
arXiv Detail & Related papers (2024-06-18T23:14:29Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding [16.50466940644004]
We present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input.
Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss.
arXiv Detail & Related papers (2024-03-15T15:27:58Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging.
We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild.
We produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations.
arXiv Detail & Related papers (2023-06-07T17:47:50Z) - Point-E: A System for Generating 3D Point Clouds from Complex Prompts [15.872304376606223]
In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU.
Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image.
While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases.
arXiv Detail & Related papers (2022-12-16T23:22:59Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.