Efficient Federated Class-Incremental Learning of Pre-Trained Models via Task-agnostic Low-rank Residual Adaptation
- URL: http://arxiv.org/abs/2505.12318v1
- Date: Sun, 18 May 2025 09:19:13 GMT
- Title: Efficient Federated Class-Incremental Learning of Pre-Trained Models via Task-agnostic Low-rank Residual Adaptation
- Authors: Feng Yu, Jia Hu, Geyong Min,
- Abstract summary: Federated Task-agnostic Low-rank Residual Adaptation (Fed-TaLoRA)<n>We develop a novel residual weight update mechanism that ensures accurate knowledge consolidation with minimal overhead.<n>Our methodological innovations are attributed to three key strategies: task-agnostic adaptation, post-aggregation model calibration, and strategic placement of LoRA modules.
- Score: 22.454292668849035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Parameter-Efficient Fine-Tuning (FedPEFT) reduces communication and computation costs in federated fine-tuning of pre-trained models by updating only a small subset of model parameters. However, existing approaches assume static data distributions, failing to adequately address real-world scenarios where new classes continually emerge, particularly in Federated Class Incremental Learning (FCIL). FCIL faces two key challenges: catastrophic forgetting and performance degradation caused by non-IID data across clients. Unlike current methods that maintain separate task-specific components or suffer from aggregation noise during parameter aggregation, we propose Federated Task-agnostic Low-rank Residual Adaptation (Fed-TaLoRA), a novel parameter-efficient approach for fine-tuning in resource-constrained FCIL scenarios. Specifically, we fine-tune only shared task-agnostic LoRA parameters across sequential tasks, effectively mitigating catastrophic forgetting while enabling efficient knowledge transfer among clients. Based on a theoretical analysis of aggregation, we develop a novel residual weight update mechanism that ensures accurate knowledge consolidation with minimal overhead. Our methodological innovations are attributed to three key strategies: task-agnostic adaptation, post-aggregation model calibration, and strategic placement of LoRA modules. Extensive experiments on multiple benchmark datasets demonstrate that Fed-TaLoRA consistently outperforms state-of-the-art methods in diverse data heterogeneity scenarios while substantially reducing resource requirements.
Related papers
- Intrinsic Training Signals for Federated Learning Aggregation [10.532838477096055]
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy.<n>This work demonstrates that effective model merging can be achieved solely through existing training signals.
arXiv Detail & Related papers (2025-07-09T13:03:23Z) - Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - A Survey on Parameter-Efficient Fine-Tuning for Foundation Models in Federated Learning [5.280048850098648]
Foundation models have revolutionized artificial intelligence by providing robust, versatile architectures pre-trained on large-scale datasets.<n>Adapting these massive models to specific downstream tasks requires fine-tuning, which can be prohibitively expensive in computational resources.<n>This survey provides a comprehensive review of the integration of PEFT techniques within federated learning environments.
arXiv Detail & Related papers (2025-04-29T18:18:39Z) - Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones.<n>We propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD)<n>We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models.
arXiv Detail & Related papers (2025-04-09T17:59:42Z) - Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
This paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation.<n>Experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions.
arXiv Detail & Related papers (2025-03-31T09:18:42Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
We introduce Retrieval-based.
Ensemble (RPE), a new method that creates a vectorized database of.
Low-Rank Adaptations (LoRAs)
RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning.
RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data.
arXiv Detail & Related papers (2024-10-13T16:28:38Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation [7.200910949076064]
Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data.
Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates.
We propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness.
arXiv Detail & Related papers (2024-09-02T19:28:35Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.