Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations
- URL: http://arxiv.org/abs/2501.15379v1
- Date: Sun, 26 Jan 2025 03:29:18 GMT
- Title: Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations
- Authors: Zijun Long, Kangheng Liang, Gerardo Aragon-Camarasa, Richard Mccreadie, Paul Henderson,
- Abstract summary: Diffusion Augmented Retrieval (DAR) is a paradigm-shifting framework that bypasses MLLM finetuning entirely.
DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations.
- Score: 7.439049772394586
- License:
- Abstract: Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.
Related papers
- Multi-task Visual Grounding with Coarse-to-Fine Consistency Constraints [15.541287957548771]
We propose a Coarse-to-fine Consistency Constraints Visual Grounding architecture.
It integrates implicit and explicit modeling approaches within a two-stage framework.
It significantly outperforms state-of-the-art REC and RIS methods by a substantial margin.
arXiv Detail & Related papers (2025-01-12T04:30:13Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.
We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
arXiv Detail & Related papers (2025-01-08T20:11:09Z) - Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model [27.56988000960972]
We introduce a new framework based on a dual context of both domain-shared and class-specific contexts.
Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in Large Language Models.
We also formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens.
arXiv Detail & Related papers (2024-07-05T13:15:29Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching.
We develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations.
Experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R@1 gain on multiple models.
arXiv Detail & Related papers (2023-03-23T15:42:05Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z) - Fusion with Hierarchical Graphs for Mulitmodal Emotion Recognition [7.147235324895931]
This paper proposes a novel hierarchical graph network (HFGCN) model that learns more informative multimodal representations.
Specifically, the proposed model fuses multimodality inputs using a two-stage graph construction approach and encodes the modality dependencies into the conversation representation.
Experiments showed the effectiveness of our proposed model for more accurate AER, which yielded state-of-the-art results on two public datasets.
arXiv Detail & Related papers (2021-09-15T08:21:01Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.