Deep Transfer $Q$-Learning for Offline Non-Stationary Reinforcement Learning
- URL: http://arxiv.org/abs/2501.04870v1
- Date: Wed, 08 Jan 2025 23:03:18 GMT
- Title: Deep Transfer $Q$-Learning for Offline Non-Stationary Reinforcement Learning
- Authors: Jinhang Chai, Elynn Chen, Jianqing Fan,
- Abstract summary: This paper pioneers the study of transfer learning for dynamic decision scenarios modeled by non-stationary finite-horizon Markov decision processes.
We introduce a novel re-weighted targeting procedure'' to construct transferable RL samples'' and propose transfer deep $Q*$-learning''
Our analytical techniques for transfer learning in neural network approximation and transition density transfers have broader implications.
- Score: 3.2839905453386162
- License:
- Abstract: In dynamic decision-making scenarios across business and healthcare, leveraging sample trajectories from diverse populations can significantly enhance reinforcement learning (RL) performance for specific target populations, especially when sample sizes are limited. While existing transfer learning methods primarily focus on linear regression settings, they lack direct applicability to reinforcement learning algorithms. This paper pioneers the study of transfer learning for dynamic decision scenarios modeled by non-stationary finite-horizon Markov decision processes, utilizing neural networks as powerful function approximators and backward inductive learning. We demonstrate that naive sample pooling strategies, effective in regression settings, fail in Markov decision processes.To address this challenge, we introduce a novel ``re-weighted targeting procedure'' to construct ``transferable RL samples'' and propose ``transfer deep $Q^*$-learning'', enabling neural network approximation with theoretical guarantees. We assume that the reward functions are transferable and deal with both situations in which the transition densities are transferable or nontransferable. Our analytical techniques for transfer learning in neural network approximation and transition density transfers have broader implications, extending to supervised transfer learning with neural networks and domain shift scenarios. Empirical experiments on both synthetic and real datasets corroborate the advantages of our method, showcasing its potential for improving decision-making through strategically constructing transferable RL samples in non-stationary reinforcement learning contexts.
Related papers
- Features are fate: a theory of transfer learning in high-dimensional regression [23.840251319669907]
We show that when the target task is well represented by the feature space of the pre-trained model, transfer learning outperforms training from scratch.
For this model, we establish rigorously that when the feature space overlap between the source and target tasks is sufficiently strong, both linear transfer and fine-tuning improve performance.
arXiv Detail & Related papers (2024-10-10T17:58:26Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
We develop a theoretical framework to analyze the transferability of self-supervised contrastive learning.
We show that contrastive learning fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL)
arXiv Detail & Related papers (2023-03-02T09:26:20Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - On The Transferability of Deep-Q Networks [6.822707222147354]
Transfer Learning is an efficient machine learning paradigm that allows overcoming some of the hurdles that characterize the successful training of deep neural networks.
While exploiting TL is a well established and successful training practice in Supervised Learning (SL), its applicability in Deep Reinforcement Learning (DRL) is rarer.
In this paper, we study the level of transferability of three different variants of Deep-Q Networks on popular DRL benchmarks and on a set of novel, carefully designed control tasks.
arXiv Detail & Related papers (2021-10-06T10:29:37Z) - Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection [50.29565896287595]
We apply transfer learning to exploit common datasets for sarcasm detection.
We propose a generalized latent optimization strategy that allows different losses to accommodate each other.
In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.
arXiv Detail & Related papers (2021-04-19T13:07:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.