Multilinear Tensor Low-Rank Approximation for Policy-Gradient Methods in Reinforcement Learning
- URL: http://arxiv.org/abs/2501.04879v1
- Date: Wed, 08 Jan 2025 23:22:08 GMT
- Title: Multilinear Tensor Low-Rank Approximation for Policy-Gradient Methods in Reinforcement Learning
- Authors: Sergio Rozada, Hoi-To Wai, Antonio G. Marques,
- Abstract summary: Reinforcement learning (RL) aims to estimate the action to take given a (time-varying) state.
This paper postulates multi-linear mappings to efficiently estimate the parameters of the RL policy.
We leverage the PARAFAC decomposition to design tensor low-rank policies.
- Score: 27.868175900131313
- License:
- Abstract: Reinforcement learning (RL) aims to estimate the action to take given a (time-varying) state, with the goal of maximizing a cumulative reward function. Predominantly, there are two families of algorithms to solve RL problems: value-based and policy-based methods, with the latter designed to learn a probabilistic parametric policy from states to actions. Most contemporary approaches implement this policy using a neural network (NN). However, NNs usually face issues related to convergence, architectural suitability, hyper-parameter selection, and underutilization of the redundancies of the state-action representations (e.g. locally similar states). This paper postulates multi-linear mappings to efficiently estimate the parameters of the RL policy. More precisely, we leverage the PARAFAC decomposition to design tensor low-rank policies. The key idea involves collecting the policy parameters into a tensor and leveraging tensor-completion techniques to enforce low rank. We establish theoretical guarantees of the proposed methods for various policy classes and validate their efficacy through numerical experiments. Specifically, we demonstrate that tensor low-rank policy models reduce computational and sample complexities in comparison to NN models while achieving similar rewards.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Matrix Low-Rank Approximation For Policy Gradient Methods [10.196333441334895]
Estimating a policy that maps to actions is a central problem in reinforcement learning.
In this paper, we put forth low-rank matrix-based models to estimate efficiently the parameters of gradient Policy algorithms.
arXiv Detail & Related papers (2024-05-27T19:49:08Z) - Matrix Low-Rank Trust Region Policy Optimization [10.196333441334895]
Methods in reinforcement learning use a Policy Gradient approach to learn a parametric policy that maps to actions.
Trust region algorithms, like Trust Region Policy Optimization (TRPO), constrain the policy update step, ensuring monotonic improvements.
This paper introduces low-rank matrix-based models as an efficient alternative for estimating the parameters of TRPO algorithms.
arXiv Detail & Related papers (2024-05-27T19:46:31Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems [1.747623282473278]
We introduce a policygradient method for model reinforcement learning (RL) that exploits a type of stationary distributions commonly obtained from decision processes (MDPs) in networks.
Specifically, when the stationary distribution of the MDP is parametrized by policy parameters, we can improve existing policy methods for average-reward estimation.
arXiv Detail & Related papers (2023-12-05T14:44:58Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning.
We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters.
We propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.