論文の概要: SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
- arxiv url: http://arxiv.org/abs/2501.04899v1
- Date: Thu, 09 Jan 2025 01:24:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:42.444873
- Title: SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
- Title(参考訳): SUGAR: よりスマートな検索のためのコンテキスト信頼の活用
- Authors: Hanna Zubkova, Ji-Hoon Park, Seong-Whan Lee,
- Abstract要約: セマンティック不確実性誘導適応検索(SUGAR)について紹介する。
我々は、文脈に基づくエントロピーを利用して、検索するかどうかを積極的に決定し、シングルステップとマルチステップの検索を更に決定する。
実験の結果,意味的不確実性推定によって導かれる選択探索により,多様な質問応答タスクのパフォーマンスが向上し,より効率的な推論が達成された。
- 参考スコア(独自算出の注目度): 28.552283701883766
- License:
- Abstract: Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
- Abstract(参考訳): 大規模言語モデル(LLM)の限られたパラメトリック知識を念頭に置いて、それらに関連する外部知識を提供する検索強化世代(RAG)は、幻覚の問題をある程度緩和するためのアプローチとして役立っている。
しかし、モデルがノイズの多い検索コンテンツに気を散らされ、不完全な答えが生じると、検索者がトリガーする必要はないし、不正確な場合さえあるため、サポートコンテキストを均一に検索することで、応答生成の非効率化が図られる。
これらの課題に触発されて、セマンティック不確実性ガイド付き適応検索(SUGAR)を導入し、コンテキストベースのエントロピーを活用して、検索するかどうかを積極的に決定し、シングルステップとマルチステップの検索を更に決定する。
実験の結果,意味的不確実性推定によって導かれる選択探索により,多様な質問応答タスクのパフォーマンスが向上し,より効率的な推論が達成された。
関連論文リスト
- DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented Generation [33.85528514353727]
本稿では,検索関連性に基づいた多元的知識を適応的に活用するRetrieval Preference Optimization (RPO)を提案する。
RPOは、トレーニングにおける検索関連性の認識を定量化する唯一のRAG指定アライメントアプローチである。
4つのデータセットの実験では、RPOは追加のコンポーネントを使わずに、RAGを4~10%精度で上回っている。
論文 参考訳(メタデータ) (2025-01-23T14:58:56Z) - To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation [3.724713116252253]
不確実性検出メトリクスは、質問応答精度をわずかに低下させるだけで、検索呼び出し数をほぼ半分に減らすことができる。
以上の結果から,Degree Matrix Jaccard や Eccentricity などの不確実性検出指標は,質問応答精度をわずかに低下させることなく,検索回数をほぼ半分に抑えることが示唆された。
論文 参考訳(メタデータ) (2025-01-16T04:56:33Z) - DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction [53.803276766404494]
モデルの不確実性を評価する既存の手法は、元のクエリに対する自己整合性を評価することで、必ずしも真の不確実性を把握するわけではない。
マルチエージェントインタラクションを用いたモデルの不確実性評価のための新しい手法であるDiverseAgentEntropyを提案する。
提案手法は,モデルの信頼性をより正確に予測し,さらに幻覚を検知し,他の自己整合性に基づく手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-12T18:52:40Z) - LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
不確実性を伴う長文生成(LoGU)の課題について紹介する。
不確実性抑制と不確実性誤認の2つの主要な課題を特定します。
当社のフレームワークでは,原子的クレームに基づく不確実性を改善するため,分割・分散戦略を採用している。
提案手法が精度を向上し,幻覚を低減し,応答の包括性を維持できることを示す。
論文 参考訳(メタデータ) (2024-10-18T09:15:35Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - LLM Uncertainty Quantification through Directional Entailment Graph and Claim Level Response Augmentation [5.255129053741665]
大規模言語モデル(LLM)は、基本質問応答(QA)に起因して、様々な領域にわたる高度なタスクにおいて優れた機能を示した。
そこで,本稿では,包含確率から方向グラフを構築することにより,方向不安定性を捉える不確実性を評価する新しい手法を提案する。
また、提案したレイヤに既存の作業のセマンティクスの不確実性を統合する方法も提供します。
論文 参考訳(メタデータ) (2024-07-01T06:11:30Z) - Assessing "Implicit" Retrieval Robustness of Large Language Models [17.006566708461346]
様々な大規模言語モデルの「単純」検索頑健性を評価する。
金と気を散らすコンテキストの混合による微調整は、モデルの不正確な検索に対する堅牢性を大幅に向上させる。
これは、大きな言語モデルは、最終回答の監督からのみ学習することで、関連性または無関係な検索コンテキストを暗黙的に扱うことができることを示唆している。
論文 参考訳(メタデータ) (2024-06-26T07:38:24Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。