Image2CADSeq: Computer-Aided Design Sequence and Knowledge Inference from Product Images
- URL: http://arxiv.org/abs/2501.04928v1
- Date: Thu, 09 Jan 2025 02:36:21 GMT
- Title: Image2CADSeq: Computer-Aided Design Sequence and Knowledge Inference from Product Images
- Authors: Xingang Li, Zhenghui Sha,
- Abstract summary: In scenarios where digital CAD files are not accessible, reverse engineering (RE) has been used to reconstruct 3D CAD models.
Recent advances have seen the rise of data-driven approaches for RE, with a primary focus on converting 3D data, such as point clouds, into 3D models in boundary representation (B-rep) format.
Our research introduces a novel data-driven approach with an Image2CADSeq neural network model.
- Score: 0.7673339435080445
- License:
- Abstract: Computer-aided design (CAD) tools empower designers to design and modify 3D models through a series of CAD operations, commonly referred to as a CAD sequence. In scenarios where digital CAD files are not accessible, reverse engineering (RE) has been used to reconstruct 3D CAD models. Recent advances have seen the rise of data-driven approaches for RE, with a primary focus on converting 3D data, such as point clouds, into 3D models in boundary representation (B-rep) format. However, obtaining 3D data poses significant challenges, and B-rep models do not reveal knowledge about the 3D modeling process of designs. To this end, our research introduces a novel data-driven approach with an Image2CADSeq neural network model. This model aims to reverse engineer CAD models by processing images as input and generating CAD sequences. These sequences can then be translated into B-rep models using a solid modeling kernel. Unlike B-rep models, CAD sequences offer enhanced flexibility to modify individual steps of model creation, providing a deeper understanding of the construction process of CAD models. To quantitatively and rigorously evaluate the predictive performance of the Image2CADSeq model, we have developed a multi-level evaluation framework for model assessment. The model was trained on a specially synthesized dataset, and various network architectures were explored to optimize the performance. The experimental and validation results show great potential for the model in generating CAD sequences from 2D image data.
Related papers
- Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CAD is a novel framework that employs stable diffusion models tailored to automate the generation process.
We show that Text2CAD effectively generates technical drawings that are accurately translated into high-quality 3D CAD models.
arXiv Detail & Related papers (2024-11-09T15:12:06Z) - Img2CAD: Conditioned 3D CAD Model Generation from Single Image with Structured Visual Geometry [12.265852643914439]
We present Img2CAD, the first knowledge that uses 2D image inputs to generate editable parameters.
Img2CAD enables seamless integration between AI 3D reconstruction and CAD representation.
arXiv Detail & Related papers (2024-10-04T13:27:52Z) - OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design [1.481550828146527]
We fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B)
OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands.
These outputs can be directly used with existing CAD tools' APIs to generate project files.
arXiv Detail & Related papers (2024-06-14T10:47:52Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - 'CADSketchNet' -- An Annotated Sketch dataset for 3D CAD Model Retrieval
with Deep Neural Networks [0.8155575318208631]
The research work presented in this paper aims at developing a dataset suitable for building a retrieval system for 3D CAD models based on deep learning.
The paper also aims at evaluating the performance of various retrieval system or a search engine for 3D CAD models that accepts a sketch image as the input query.
arXiv Detail & Related papers (2021-07-13T16:10:16Z) - DeepCAD: A Deep Generative Network for Computer-Aided Design Models [37.655225142981564]
We present the first 3D generative model for a drastically different shape representation -- describing a shape as a sequence of computer-aided design (CAD) operations.
Drawing an analogy between CAD operations and natural language, we propose a CAD generative network based on the Transformer.
arXiv Detail & Related papers (2021-05-20T03:29:18Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
This paper proposes a deep 3D energy-based model to represent volumetric shapes.
The benefits of the proposed model are six-fold.
Experiments demonstrate that the proposed model can generate high-quality 3D shape patterns.
arXiv Detail & Related papers (2020-12-25T06:09:36Z) - Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve [54.054575408582565]
We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image.
We present Mask2CAD, which jointly detects objects in real-world images and for each detected object, optimize for the most similar CAD model and its pose.
This produces a clean, lightweight representation of the objects in an image.
arXiv Detail & Related papers (2020-07-26T00:08:37Z) - CAD-Deform: Deformable Fitting of CAD Models to 3D Scans [30.451330075135076]
We introduce CAD-Deform, a method which obtains more accurate CAD-to-scan fits by non-rigidly deforming retrieved CAD models.
A series of experiments demonstrate that our method achieves significantly tighter scan-to-CAD fits, allowing a more accurate digital replica of the scanned real-world environment.
arXiv Detail & Related papers (2020-07-23T12:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.