論文の概要: MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain
- arxiv url: http://arxiv.org/abs/2501.04950v1
- Date: Thu, 09 Jan 2025 03:58:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:15.719527
- Title: MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain
- Title(参考訳): MORDA: オブジェクト検出器のリアルターゲットドメインへの適応を実現するための合成データセット。
- Authors: Hojun Lim, Heecheol Yoo, Jinwoo Lee, Seungmin Jeon, Hyeongseok Jeon,
- Abstract要約: 我々は、新しい駆動データセットであるMORDA: Mixture of Real- Domain Characteristics for synthetic-data-assisted Domain Adaptationを構築できる合成融合ドメインを作成する。
実験の結果,MORDAはAI-Hubデータセットの平均精度(mAP)を大幅に向上する一方,nuScenesはわずかに向上することがわかった。
- 参考スコア(独自算出の注目度): 4.924414049280259
- License:
- Abstract: Deep neural network (DNN) based perception models are indispensable in the development of autonomous vehicles (AVs). However, their reliance on large-scale, high-quality data is broadly recognized as a burdensome necessity due to the substantial cost of data acquisition and labeling. Further, the issue is not a one-time concern, as AVs might need a new dataset if they are to be deployed to another region (real-target domain) that the in-hand dataset within the real-source domain cannot incorporate. To mitigate this burden, we propose leveraging synthetic environments as an auxiliary domain where the characteristics of real domains are reproduced. This approach could enable indirect experience about the real-target domain in a time- and cost-effective manner. As a practical demonstration of our methodology, nuScenes and South Korea are employed to represent real-source and real-target domains, respectively. That means we construct digital twins for several regions of South Korea, and the data-acquisition framework of nuScenes is reproduced. Blending the aforementioned components within a simulator allows us to obtain a synthetic-fusion domain in which we forge our novel driving dataset, MORDA: Mixture Of Real-domain characteristics for synthetic-data-assisted Domain Adaptation. To verify the value of synthetic features that MORDA provides in learning about driving environments of South Korea, 2D/3D detectors are trained solely on a combination of nuScenes and MORDA. Afterward, their performance is evaluated on the unforeseen real-world dataset (AI-Hub) collected in South Korea. Our experiments present that MORDA can significantly improve mean Average Precision (mAP) on AI-Hub dataset while that on nuScenes is retained or slightly enhanced.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)に基づく知覚モデルは、自動運転車(AV)の開発には不可欠である。
しかし,大規模で高品質なデータへの依存は,データ取得とラベル付けのかなりのコストのため,負担のかかる必要性として広く認識されている。
さらに、AVが他のリージョン(実際のターゲットドメイン)にデプロイされる場合、実際のソースドメイン内の手動データセットが組み込まれない場合、新たなデータセットが必要になるため、この問題は1回限りの懸念ではない。
この負担を軽減するために,実際のドメインの特性を再現する補助ドメインとして,合成環境を活用することを提案する。
このアプローチによって、リアルタイムドメインに関する間接的なエクスペリエンスを、時間的かつコスト的に実現できます。
本手法の実践的実証として, nuScenes と South Korea が, それぞれ実地ドメインと実地ドメインを表現している。
つまり、韓国のいくつかの地域でデジタルツインを構築し、nuScenesのデータ取得フレームワークを再現する。
前記の部品をシミュレータ内に埋め込むことで、新しい駆動データセットであるMORDA: 合成データ支援ドメイン適応のための実ドメイン特性の混合を実現するための合成融合ドメインを得ることができる。
MORDAが韓国の運転環境について学ぶ上で提供する合成特徴の価値を検証するため、2D/3D検出器はnuScenesとMORDAの組み合わせでのみ訓練される。
その後、韓国で収集された予期せぬ実世界のデータセット(AI-Hub)を用いて、その性能を評価する。
実験の結果,MORDAはAI-Hubデータセットの平均精度(mAP)を大幅に向上する一方,nuScenesはわずかに向上することがわかった。
関連論文リスト
- Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
室内3次元物体検出における非教師なし領域適応のための新しいフレームワークを提案する。
合成データセット3D-FRONTから実世界のデータセットScanNetV2とSUN RGB-Dへの適応結果は、ソースオンリーベースラインよりも9.7%、9.1%のmAP25が顕著に改善されていることを示している。
論文 参考訳(メタデータ) (2024-06-17T08:18:41Z) - Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement [12.857137513211866]
本稿では、教師なしドメイン適応のためのトレーニングデータ合成と視線推定モデルからなる効果的なモデルトレーニングパイプラインを提案する。
提案したデータ合成は、単一画像の3D再構成を利用して、3次元の顔形状データセットを必要とせずに、ソース領域から頭部ポーズの範囲を広げる。
本稿では、視線関連特徴を分離し、背景アグリゲーション整合性損失を導入し、合成音源領域の特性を生かしたディエンタングリングオートエンコーダネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:15:03Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
特定のコンピュータビジョンタスクのための合成データで訓練されたネットワークは、実世界のデータでテストすると大幅に劣化する。
本稿では,このような手法を改良するための新しい手法を提案し,評価する。
本稿では,このペア選択にセマンティック・インスペクションを効果的に組み込む手法を提案し,モデルの性能向上に寄与する。
論文 参考訳(メタデータ) (2023-02-08T15:51:54Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - DARCNN: Domain Adaptive Region-based Convolutional Neural Network for
Unsupervised Instance Segmentation in Biomedical Images [4.3171602814387136]
ベンチマークコンピュータビジョンデータセットのアノテーションを多用し、多様なバイオメディカルデータセットに対して教師なしのインスタンスセグメンテーションを実行することを提案する。
本研究では,COCOからのオブジェクト定義の知識を複数のバイオメディカルデータセットに適用するドメイン適応型領域ベース畳み込みニューラルネットワーク(DARCNN)を提案する。
多数のバイオメディカルデータセット上での教師なしインスタンスセグメンテーションにおけるDARCNNの性能を示す。
論文 参考訳(メタデータ) (2021-04-03T06:54:33Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-09-07T23:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。