SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
- URL: http://arxiv.org/abs/2501.04974v2
- Date: Fri, 10 Jan 2025 05:15:34 GMT
- Title: SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
- Authors: Benjamin Reichman, Xiaofan Yu, Lanxiang Hu, Jack Truxal, Atishay Jain, Rushil Chandrupatla, Tajana Šimunić Rosing, Larry Heck,
- Abstract summary: SensorQA is the first human-created question-answering dataset for long-term time-series sensor data for daily life monitoring.
We establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices.
Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions.
- Score: 1.925154869666529
- License:
- Abstract: With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce SensorQA, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. SensorQA is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: \url{https://github.com/benjamin-reichman/SensorQA}.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition [9.072495000412943]
We bridge the gap between wearable sensor technology and personalized AI assistants by enabling Large Language Models (LLMs) to understand time-series tasks like human activity recognition (HAR)
We introduce SensorLLM, a two-stage framework to unlock LLMs' potential for sensor data tasks.
We show that SensorLLM evolves into an effective sensor learner, reasoner, and learner, enabling it to generalize across diverse datasets for HAR tasks.
arXiv Detail & Related papers (2024-10-14T15:30:41Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
A key problem holding up progress in wearable sensor-based human activity recognition is the unavailability of diverse and labeled training data.
We propose an unsupervised statistical feature-guided diffusion model specifically optimized for wearable sensor-based human activity recognition.
By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data.
arXiv Detail & Related papers (2023-05-30T15:12:59Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerf is a community-led benchmark suite for evaluating ML datasets and data-centric algorithms.
We provide an open, online platform with multiple rounds of challenges to support this iterative development.
The benchmarks, online evaluation platform, and baseline implementations are open source.
arXiv Detail & Related papers (2022-07-20T17:47:54Z) - Occupancy Detection in Room Using Sensor Data [0.0]
This paper provides a solution to detect occupancy using sensor data by using and testing several variables.
Seven famous algorithms in Machine Learning, namely as Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM and K-Nearest Neighbors are tested and compared.
arXiv Detail & Related papers (2021-01-10T19:53:57Z) - Deep ConvLSTM with self-attention for human activity decoding using
wearables [0.0]
We propose a deep neural network architecture that captures features of multiple sensor time-series data but also selects important time points.
We show the validity of the proposed approach across different data sampling strategies and demonstrate that the self-attention mechanism gave a significant improvement.
The proposed methods open avenues for better decoding of human activity from multiple body sensors over extended periods time.
arXiv Detail & Related papers (2020-05-02T04:30:31Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.