SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
- URL: http://arxiv.org/abs/2501.05040v3
- Date: Wed, 07 May 2025 04:06:41 GMT
- Title: SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
- Authors: Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, Kai Chen,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks.<n>SWE-Fixer is a novel open-source framework designed to effectively and efficiently resolve GitHub issues.<n>We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving competitive performance among open-source models.
- Score: 56.9361004704428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source framework designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other model to generate patches for the identified files. To mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches and train the two models of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving competitive performance among open-source models with scores of 22.0% and 30.2%. Furthermore, SWE-Fixer reaches state-of-the-art performance (24.7% on Lite and 32.8% on Verified) with PASS_TO_PASS (P2P) filtering. Additionally, our approach requires only two model calls per instance, making it significantly more efficient than existing methods. These results highlight the effectiveness of SWE-Fixer in real-world code-fixing scenarios. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
Related papers
- The SWE-Bench Illusion: When State-of-the-Art LLMs Remember Instead of Reason [1.6249398255272318]
We present empirical evidence that performance gains on SWE-Bench-Verified may be partially driven by memorization rather than genuine problem-solving.<n>We show that state-of-the-art models achieve up to 76% accuracy in identifying buggy file paths using only issue descriptions, without access to repository structure.<n>These findings raise concerns about the validity of existing results and underscore the need for more robust, contamination-resistant benchmarks.
arXiv Detail & Related papers (2025-06-14T00:25:26Z) - LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation [12.098817831819078]
Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored.<n>This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design.
arXiv Detail & Related papers (2025-06-02T10:59:54Z) - SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving [90.32201622392137]
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs)<n>Unlike traditional static benchmarks, SwingArena models the collaborative process of software by pairing LLMs as iterations, who generate patches, and reviewers, who create test cases and verify the patches through continuous integration (CI) pipelines.
arXiv Detail & Related papers (2025-05-29T18:28:02Z) - Code Graph Model (CGM): A Graph-Integrated Large Language Model for Repository-Level Software Engineering Tasks [42.79558714652442]
Large Language Models (LLMs) have shown promise in function-level code generation, yet repository-level software engineering tasks remain challenging.<n>This paper investigates whether open-source LLMs can effectively address repository-level tasks without requiring agent-based approaches.<n>We introduce Code Graph Models (CGMs), which integrate repository code graph structures into the LLM's attention mechanism.
arXiv Detail & Related papers (2025-05-22T17:00:55Z) - SweRank: Software Issue Localization with Code Ranking [109.3289316191729]
SweRank is an efficient retrieve-and-rerank framework for software issue localization.<n>We construct SweLoc, a large-scale dataset curated from public GitHub repositories.<n>We show that SweRank achieves state-of-the-art performance, outperforming both prior ranking models and costly agent-based systems.
arXiv Detail & Related papers (2025-05-07T19:44:09Z) - Autonomous Legacy Web Application Upgrades Using a Multi-Agent System [3.456157428615978]
Large Language Models (LLMs) for autonomous code generation is gaining attention in emerging technologies.
Many outdated web applications pose security and reliability challenges, yet companies continue using them due to the complexity and cost of upgrades.
We propose an LLM-based multi-agent system that autonomously upgrades legacy web applications to the latest versions.
arXiv Detail & Related papers (2025-01-31T15:14:14Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.<n>It is constructed using a dataset curated from 30 well-known GitHub repositories.<n>We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning [72.90823351726374]
We introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs.
We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks.
To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures.
arXiv Detail & Related papers (2024-08-06T18:53:54Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
Large language models (LLMs) are increasingly used to solve various programming tasks.
We show that the task is difficult as it requires the model to learn long-range code relationships.
We propose a technique to address these challenges with a new approach for querying and fine-tuning LLMs.
arXiv Detail & Related papers (2024-02-19T18:35:40Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - SWE-bench: Can Language Models Resolve Real-World GitHub Issues? [80.52201658231895]
SWE-bench is an evaluation framework consisting of $2,294$ software engineering problems drawn from real GitHub issues and corresponding pull requests across $12$ popular Python repositories.
We show that both state-of-the-art proprietary models and our fine-tuned model SWE-Llama can resolve only the simplest issues.
arXiv Detail & Related papers (2023-10-10T16:47:29Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.