Simultaneous emulation and downscaling with physically-consistent deep learning-based regional ocean emulators
- URL: http://arxiv.org/abs/2501.05058v1
- Date: Thu, 09 Jan 2025 08:28:31 GMT
- Title: Simultaneous emulation and downscaling with physically-consistent deep learning-based regional ocean emulators
- Authors: Leonard Lupin-Jimenez, Moein Darman, Subhashis Hazarika, Tianning Wu, Michael Gray, Ruyoing He, Anthony Wong, Ashesh Chattopadhyay,
- Abstract summary: We propose an AI-based ocean emulation and downscaling framework focusing on the high-resolution regional ocean over Gulf of Mexico.
The framework shows both short-term skills as well as accurate long-term statistics in terms of mean and variability.
- Score: 2.369898950737752
- License:
- Abstract: Building on top of the success in AI-based atmospheric emulation, we propose an AI-based ocean emulation and downscaling framework focusing on the high-resolution regional ocean over Gulf of Mexico. Regional ocean emulation presents unique challenges owing to the complex bathymetry and lateral boundary conditions as well as from fundamental biases in deep learning-based frameworks, such as instability and hallucinations. In this paper, we develop a deep learning-based framework to autoregressively integrate ocean-surface variables over the Gulf of Mexico at $8$ Km spatial resolution without unphysical drifts over decadal time scales and simulataneously downscale and bias-correct it to $4$ Km resolution using a physics-constrained generative model. The framework shows both short-term skills as well as accurate long-term statistics in terms of mean and variability.
Related papers
- A Neural Operator-Based Emulator for Regional Shallow Water Dynamics [5.09419041446345]
Coastal regions are particularly vulnerable to the impacts of rising sea levels and extreme weather events.
Accurate real-time forecasting of hydrodynamic processes in these areas is essential for infrastructure planning and climate adaptation.
We present a novel autoregressive neural emulator that employs dimensionality reduction to efficiently approximate high-dimensional numerical solvers.
arXiv Detail & Related papers (2025-02-20T18:02:44Z) - Learning to generate physical ocean states: Towards hybrid climate modeling [1.5845117761091052]
Ocean General Circulation Models require extensive computational resources to reach equilibrium states.
Deep learning emulators, despite offering fast predictions, lack the physical interpretability and long-term stability necessary for climate scientists.
We propose to take the best from both worlds by leveraging deep generative models to produce physically consistent oceanic states.
arXiv Detail & Related papers (2025-02-04T17:14:41Z) - Samudra: An AI Global Ocean Emulator for Climate [27.24070831177446]
We build a global emulator of the ocean component of a state-of-the-art climate model.
We use a modified ConvNeXt UNet architecture trained on multidepth levels of ocean data.
We show that the ocean emulator - Samudra - can reproduce the depth structure of ocean variables and their interannual variability.
arXiv Detail & Related papers (2024-12-05T01:25:34Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Training neural mapping schemes for satellite altimetry with simulation
data [6.591483977714996]
Deep learning schemes have emerged as appealing solutions to address space-time problems.
The scarcity of real altimetry dataset impedes the training of state-of-the-art neural schemes on real-world case-studies.
Here, we leverage both simulations of ocean dynamics and satellite altimeters to train simulation-based neural mapping schemes for the sea surface height.
arXiv Detail & Related papers (2023-09-19T14:32:25Z) - AI-GOMS: Large AI-Driven Global Ocean Modeling System [3.635120568177384]
Ocean modeling is a powerful tool for simulating the physical, chemical, and biological processes of the ocean.
Here, we present AI-GOMS, a large AI-driven global ocean modeling system, for accurate and efficient global ocean daily prediction.
arXiv Detail & Related papers (2023-08-06T15:59:30Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data [73.8970871148949]
High-fidelity reconstruction of fluids from sparse multiview RGB videos remains a formidable challenge.
Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting.
We present the first method to reconstruct dynamic fluid by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization.
arXiv Detail & Related papers (2022-06-14T03:38:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.