Training neural mapping schemes for satellite altimetry with simulation
data
- URL: http://arxiv.org/abs/2309.14350v1
- Date: Tue, 19 Sep 2023 14:32:25 GMT
- Title: Training neural mapping schemes for satellite altimetry with simulation
data
- Authors: Quentin Febvre, Julien Le Sommer, Cl\'ement Ubelmann, Ronan Fablet
- Abstract summary: Deep learning schemes have emerged as appealing solutions to address space-time problems.
The scarcity of real altimetry dataset impedes the training of state-of-the-art neural schemes on real-world case-studies.
Here, we leverage both simulations of ocean dynamics and satellite altimeters to train simulation-based neural mapping schemes for the sea surface height.
- Score: 6.591483977714996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite altimetry combined with data assimilation and optimal interpolation
schemes have deeply renewed our ability to monitor sea surface dynamics.
Recently, deep learning (DL) schemes have emerged as appealing solutions to
address space-time interpolation problems. The scarcity of real altimetry
dataset, in terms of space-time coverage of the sea surface, however impedes
the training of state-of-the-art neural schemes on real-world case-studies.
Here, we leverage both simulations of ocean dynamics and satellite altimeters
to train simulation-based neural mapping schemes for the sea surface height and
demonstrate their performance for real altimetry datasets. We analyze further
how the ocean simulation dataset used during the training phase impacts this
performance. This experimental analysis covers both the resolution from
eddy-present configurations to eddy-rich ones, forced simulations vs.
reanalyses using data assimilation and tide-free vs. tide-resolving
simulations. Our benchmarking framework focuses on a Gulf Stream region for a
realistic 5-altimeter constellation using NEMO ocean simulations and 4DVarNet
mapping schemes. All simulation-based 4DVarNets outperform the operational
observation-driven and reanalysis products, namely DUACS and GLORYS. The more
realistic the ocean simulation dataset used during the training phase, the
better the mapping. The best 4DVarNet mapping was trained from an eddy-rich and
tide-free simulation datasets. It improves the resolved longitudinal scale from
151 kilometers for DUACS and 241 kilometers for GLORYS to 98 kilometers and
reduces the root mean squared error (RMSE) by 23% and 61%. These results open
research avenues for new synergies between ocean modelling and ocean
observation using learning-based approaches.
Related papers
- Machine learned reconstruction of tsunami dynamics from sparse observations [0.0]
We use a transformer neural network designed for sparse sensing applications to estimate full-field surface height measurements of tsunami waves.
We train the model on a dataset consisting of 8 tsunami simulations whose epicenters correspond to historical USGS earthquake records.
The results show remarkable resolution of fine scale phase and amplitude features from the true field, provided that at least a few of the sensors have obtained a non-zero signal.
arXiv Detail & Related papers (2024-11-20T00:42:40Z) - Super-Resolution works for coastal simulations [6.263499279406057]
High-resolution simulations are necessary to advance understanding of many processes, specifically, to predict flooding from tsunamis and storm surges.
We propose a Deep Network for Super-resolution enhancement to efficiently learn high-resolution numerical solutions.
Our method shows superior super-resolution quality and fast computation compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-29T14:16:13Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Storm Surge Modeling in the AI ERA: Using LSTM-based Machine Learning
for Enhancing Forecasting Accuracy [0.7149367973754319]
We propose and analyze the use of an LSTM-based deep learning network machine learning architecture.
The overall goal of this work is to predict the systemic error of the physics model and use it to improve the accuracy of the simulation results post factum.
arXiv Detail & Related papers (2024-03-07T13:19:38Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Evaluation of Deep Neural Operator Models toward Ocean Forecasting [0.3774866290142281]
Deep neural operator models can predict classic fluid flows and simulations of realistic ocean dynamics.
We first evaluate the capabilities of such deep neural operator models when trained on a simulated two-dimensional fluid flow past a cylinder.
We then investigate their application to forecasting ocean surface circulation in the Middle Atlantic Bight and Massachusetts Bay.
arXiv Detail & Related papers (2023-08-22T22:38:54Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - SimuShips -- A High Resolution Simulation Dataset for Ship Detection
with Precise Annotations [0.0]
State-of-the-art obstacle detection algorithms are based on convolutional neural networks (CNNs)
SimuShips is a publicly available simulation-based dataset for maritime environments.
arXiv Detail & Related papers (2022-09-22T07:33:31Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Using Machine Learning at Scale in HPC Simulations with SmartSim: An
Application to Ocean Climate Modeling [52.77024349608834]
We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online inference of Deep Neural Networks (DNN) using SmartSim.
SmartSim is a library dedicated to enabling online analysis and Machine Learning (ML) for traditional HPC simulations.
arXiv Detail & Related papers (2021-04-13T19:27:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.