ResPanDiff: Diffusion Model for Pansharpening by Inferring Residual Inference
- URL: http://arxiv.org/abs/2501.05091v2
- Date: Fri, 10 Jan 2025 08:43:50 GMT
- Title: ResPanDiff: Diffusion Model for Pansharpening by Inferring Residual Inference
- Authors: Shiqi Cao, Liangjian Deng, Shangqi Deng,
- Abstract summary: We introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff)
ResPanDiff significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task.
Our experiments demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art(SOTA) techniques.
- Score: 8.756657890124766
- License:
- Abstract: The implementation of diffusion-based pansharpening task is predominantly constrained by its slow inference speed, which results from numerous sampling steps. Despite the existing techniques aiming to accelerate sampling, they often compromise performance when fusing multi-source images. To ease this limitation, we introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff), which significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task. In ResPanDiff, we innovatively propose a Markov chain that transits from noisy residuals to the residuals between the LRMS and HRMS images, thereby reducing the number of sampling steps and enhancing performance. Additionally, we design the latent space to help model extract more features at the encoding stage, Shallow Cond-Injection~(SC-I) to help model fetch cond-injected hidden features with higher dimensions, and loss functions to give a better guidance for the residual generation task. enabling the model to achieve superior performance in residual generation. Furthermore, experimental evaluations on pansharpening datasets demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art~(SOTA) techniques, requiring only 15 sampling steps, which reduces over $90\%$ step compared with the benchmark diffusion models. Our experiments also include thorough discussions and ablation studies to underscore the effectiveness of our approach.
Related papers
- Effortless Efficiency: Low-Cost Pruning of Diffusion Models [29.821803522137913]
We propose a model-agnostic structural pruning framework for diffusion models that learns a differentiable mask to sparsify the model.
To ensure effective pruning that preserves the quality of the final denoised latent, we design a novel end-to-end pruning objective that spans the entire diffusion process.
Results on state-of-the-art U-Net diffusion models SDXL and diffusion transformers (FLUX) demonstrate that our method can effectively prune up to 20% parameters with minimal perceptible performance degradation.
arXiv Detail & Related papers (2024-12-03T21:37:50Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.