論文の概要: Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms
- arxiv url: http://arxiv.org/abs/2501.05244v1
- Date: Thu, 09 Jan 2025 13:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:58:07.565129
- Title: Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms
- Title(参考訳): 高速フーリエ変換を用いた非線形イメージングのための最適化サンプリング
- Authors: Talha Sultan, Alex Bocchieri, Chaoying Gu, Xiaochun Liu, Pavel Polynkin, Andreas Velten,
- Abstract要約: 非線形(NLOS)イメージングシステムは拡散リレー面の光を収集し、3D再構成を出力する計算アルゴリズムに入力する。
これらのアルゴリズムは、Fast Fourier Transform (FFT) を用いて再構成プロセスを高速化するが、入力と出力の両方を均一な格子で空間的にサンプリングする必要がある。
本研究では,既存のNLOS撮像装置が典型的にリレー面を空間的にオーバーサンプリングし,再構成品質を犠牲にすることなく,なぜ圧縮できるのかを説明する。
- 参考スコア(独自算出の注目度): 6.866110149269
- License:
- Abstract: Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D volumetric reconstruction. These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids. However, the geometry of NLOS imaging inherently results in non-uniform sampling on the relay surface when using multi-pixel detector arrays, even though such arrays significantly reduce acquisition times. Furthermore, using these arrays increases the data rate required for sensor readout, posing challenges for real-world deployment. In this work, we utilize the phasor field framework to demonstrate that existing NLOS imaging setups typically oversample the relay surface spatially, explaining why the measurement can be compressed without significantly sacrificing reconstruction quality. This enables us to utilize the Non-Uniform Fast Fourier Transform (NUFFT) to reconstruct from sparse measurements acquired from irregularly sampled relay surfaces of arbitrary shapes. Furthermore, we utilize the NUFFT to reconstruct at arbitrary locations in the hidden volume, ensuring flexible sampling schemes for both the input and output. Finally, we utilize the Scaled Fast Fourier Transform (SFFT) to reconstruct larger volumes without increasing the number of samples stored in memory. All algorithms introduced in this paper preserve the computational complexity of FFT-based methods, ensuring scalability for practical NLOS imaging applications.
- Abstract(参考訳): 非線形(NLOS)イメージングシステムは拡散リレー面の光を収集し、この測定値を計算アルゴリズムに入力し、3次元ボリューム再構成を出力する。
これらのアルゴリズムは、Fast Fourier Transform (FFT) を用いて再構成プロセスを高速化するが、入力と出力の両方を均一な格子で空間的にサンプリングする必要がある。
しかし、NLOSイメージングの幾何学は本質的に、マルチピクセル検出器アレイを使用する場合のリレー面上の非均一サンプリングをもたらすが、そのようなアレイは取得時間を著しく短縮する。
さらに、これらの配列を使用することで、センサーの読み出しに必要なデータレートが増加し、現実のデプロイメントに課題が生じる。
本研究では,既存のNLOS撮像装置がリレー面を空間的にオーバーサンプリングし,再現性を大幅に損なうことなく,なぜ圧縮できるのかを説明する。
これにより、非均一高速フーリエ変換(NUFFT)を用いて、任意の形状の不規則サンプリングされたリレー面から得られたスパース測定から再構成することができる。
さらに、NUFFTを用いて隠れボリューム内の任意の位置を再構成し、入力と出力の両方に対して柔軟なサンプリング方式を確保する。
最後に,大規模高速フーリエ変換(SFFT)を用いて,メモリに格納されたサンプル数を増大させることなく,大規模ボリュームを再構築する。
本稿では,FFTに基づく手法の計算複雑性を保ち,実用的NLOSイメージングのためのスケーラビリティを確保する。
関連論文リスト
- Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression [0.8947831206263182]
浅層ニューラルネットワークのための適応型ランダムフーリエ(ARFF)訓練アルゴリズムを提案する。
本手法は, 粒子フィルタ型再サンプリング法を用いて, トレーニング過程を安定化し, パラメータ選択に対する感度を低下させる。
論文 参考訳(メタデータ) (2024-10-08T22:08:03Z) - WAVE-UNET: Wavelength based Image Reconstruction method using attention UNET for OCT images [1.0835264351334324]
本稿では, ラムダ空間から直接, 高品質なOCT画像を再構成し, 複雑さを軽減するための体系的設計手法WAVE-UNETを提案する。
このフレームワークは、IDFT処理されたラムダ空間フリンジを入力として、アテンションゲーティングと残差接続を持つ修正UNETを使用している。
この方法は、時間複雑度を著しく低減した良質なBスキャンを生成することによって、従来のOCTシステムより一貫して優れる。
論文 参考訳(メタデータ) (2024-10-05T11:16:10Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - SST-ReversibleNet: Reversible-prior-based Spectral-Spatial Transformer
for Efficient Hyperspectral Image Reconstruction [15.233185887461826]
Reversible-prior-based methodと呼ばれる新しいフレームワークが提案されている。
ReversibleNetは、シミュレートされた実HSIデータセットの最先端メソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-05-06T14:01:02Z) - A Deep Learning Approach for SAR Tomographic Imaging of Forested Areas [10.477070348391079]
我々は,1つのフィードフォワードパスでトモグラフィインバージョンを実行するために,軽量ニューラルネットワークをトレーニング可能であることを示す。
我々は、シミュレーションデータを用いてエンコーダ・デコーダネットワークを訓練し、実LバンドとPバンドのデータに基づいてその手法を検証する。
論文 参考訳(メタデータ) (2023-01-20T14:34:03Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
低照度画像の高精細化は、低照度画像から通常の露光画像を復元することを目的とした古典的なコンピュータビジョン問題である。
この分野でよく使われる畳み込みニューラルネットワークは、空間領域の低周波局所構造の特徴をサンプリングするのに長けている。
周波数位相のセマンティクスの制約の下で高品質なテクスチャの詳細を復元できるフーリエ係数を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2022-09-16T13:56:09Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
本稿では,脳神経信号モデリングと再構成作業を容易にするためのコンパクトな表現として,ファサール埋め込みフィールドemphPREFを提案する。
実験の結果,PreFをベースとしたニューラル信号処理技術は,2次元画像補完,3次元SDF表面回帰,5次元放射野再構成と同等であることがわかった。
論文 参考訳(メタデータ) (2022-05-26T17:43:03Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
本稿では,時間変化システムを対象とした適応機械学習手法を提案する。
我々は,エンコーダデコーダCNNのエンコーダ部出力において,非常に高次元(N>100k)の入力を低次元(N2)潜在空間にマッピングする。
そこで本手法では,割り込みを伴わないフィードバックに基づいて,内部の相関関係を学習し,その進化をリアルタイムで追跡する。
論文 参考訳(メタデータ) (2021-07-13T16:05:28Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。