論文の概要: Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
- arxiv url: http://arxiv.org/abs/2501.05258v1
- Date: Thu, 09 Jan 2025 14:13:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:57.788771
- Title: Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
- Title(参考訳): GitHubの問題を分析してコードの脆弱性検出を自動化する
- Authors: Daniele Cipollone, Changjie Wang, Mariano Scazzariello, Simone Ferlin, Maliheh Izadi, Dejan Kostic, Marco Chiesa,
- Abstract要約: 我々は、脆弱性検出に関連するGitHubの問題を分類するために特別に設計された新しいデータセットを紹介します。
結果は、早期脆弱性検出における現実世界のアプリケーションに対するこのアプローチの可能性を示している。
この作業は、オープンソースのソフトウェアエコシステムのセキュリティを強化する可能性がある。
- 参考スコア(独自算出の注目度): 6.6681265451722895
- License:
- Abstract: In today's digital landscape, the importance of timely and accurate vulnerability detection has significantly increased. This paper presents a novel approach that leverages transformer-based models and machine learning techniques to automate the identification of software vulnerabilities by analyzing GitHub issues. We introduce a new dataset specifically designed for classifying GitHub issues relevant to vulnerability detection. We then examine various classification techniques to determine their effectiveness. The results demonstrate the potential of this approach for real-world application in early vulnerability detection, which could substantially reduce the window of exploitation for software vulnerabilities. This research makes a key contribution to the field by providing a scalable and computationally efficient framework for automated detection, enabling the prevention of compromised software usage before official notifications. This work has the potential to enhance the security of open-source software ecosystems.
- Abstract(参考訳): 今日のデジタルランドスケープでは、タイムリーかつ正確な脆弱性検出の重要性が著しく高まっている。
本稿では、トランスフォーマーベースのモデルと機械学習技術を活用して、GitHubの問題を分析してソフトウェア脆弱性の識別を自動化する新しいアプローチを提案する。
我々は、脆弱性検出に関連するGitHubの問題を分類するために特別に設計された新しいデータセットを紹介します。
次に,その有効性を決定するために,様々な分類手法について検討する。
この結果は、早期脆弱性検出における現実世界のアプリケーションに対するこのアプローチの可能性を示しており、ソフトウェア脆弱性に対する悪用の窓を著しく減らす可能性がある。
本研究は, 自動検出のためのスケーラブルで効率的なフレームワークを提供することで, 公式通知前のソフトウェア使用の不正防止を実現することにより, この分野に重要な貢献を行う。
この作業は、オープンソースのソフトウェアエコシステムのセキュリティを強化する可能性がある。
関連論文リスト
- A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification [2.2020053359163305]
本稿では,GraphCodeBERTとGraph Convolutional Networkを組み合わせた実験手法であるCodeGraphNetを提案する。
この方法は、機能間の複雑な関係をキャプチャし、より正確な脆弱性の識別と分離を可能にする。
決定木とニューラルネットワークのハイブリッドであるDeepTreeモデルは、最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-11-26T17:33:02Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
この研究の目的は、C/C++のような高レベルの言語のソースコードの脆弱性をインテリジェントに検出することである。
これにより、ソースコードのセンシティブな文関連スライスをコード表現し、分散深層学習モデルの設計により脆弱性を検出することができる。
実験により,従来の静的解析の偽陽性率を低減し,機械学習の性能と精度を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-29T14:19:14Z) - Cross Project Software Vulnerability Detection via Domain Adaptation and
Max-Margin Principle [21.684043656053106]
ソフトウェア脆弱性(SV)は、コンピュータソフトウェアの普及により、一般的で深刻な問題となっている。
これら2つの重要な問題に対処するための新しいエンドツーエンドアプローチを提案する。
提案手法は, SVDにおける最重要尺度であるF1尺度の精度を, 使用データセットの2番目に高い手法と比較して1.83%から6.25%に向上させる。
論文 参考訳(メタデータ) (2022-09-19T23:47:22Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。