論文の概要: The explanation dialogues: an expert focus study to understand requirements towards explanations within the GDPR
- arxiv url: http://arxiv.org/abs/2501.05325v1
- Date: Thu, 09 Jan 2025 15:50:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:45.692426
- Title: The explanation dialogues: an expert focus study to understand requirements towards explanations within the GDPR
- Title(参考訳): 説明対話--GDPRにおける説明への要求を理解するための専門家焦点研究
- Authors: Laura State, Alejandra Bringas Colmenarejo, Andrea Beretta, Salvatore Ruggieri, Franco Turini, Stephanie Law,
- Abstract要約: 我々は、XAIに対する法的専門家や実践者の期待、推論、理解を明らかにするための専門的な研究である説明対話(Explaination Dialogues)を提示する。
調査はオンラインアンケートとフォローアップインタビューで構成されており、クレジットドメインのユースケースを中心に行われている。
提示された説明は、情報を理解して欠くことは困難であり、データコントローラと主題の異なる関心事から生じる問題について議論する。
- 参考スコア(独自算出の注目度): 47.06917254695738
- License:
- Abstract: Explainable AI (XAI) provides methods to understand non-interpretable machine learning models. However, we have little knowledge about what legal experts expect from these explanations, including their legal compliance with, and value against European Union legislation. To close this gap, we present the Explanation Dialogues, an expert focus study to uncover the expectations, reasoning, and understanding of legal experts and practitioners towards XAI, with a specific focus on the European General Data Protection Regulation. The study consists of an online questionnaire and follow-up interviews, and is centered around a use-case in the credit domain. We extract both a set of hierarchical and interconnected codes using grounded theory, and present the standpoints of the participating experts towards XAI. We find that the presented explanations are hard to understand and lack information, and discuss issues that can arise from the different interests of the data controller and subject. Finally, we present a set of recommendations for developers of XAI methods, and indications of legal areas of discussion. Among others, recommendations address the presentation, choice, and content of an explanation, technical risks as well as the end-user, while we provide legal pointers to the contestability of explanations, transparency thresholds, intellectual property rights as well as the relationship between involved parties.
- Abstract(参考訳): 説明可能なAI(XAI)は、非解釈可能な機械学習モデルを理解する方法を提供する。
しかし、これらの説明から法の専門家が何を期待しているかについては、法的遵守や欧州連合の法律に対する価値など、ほとんど知識がありません。
このギャップを埋めるために、欧州一般データ保護規則に特に焦点をあてて、XAIに対する法的専門家や実践者の期待、推論、理解を明らかにする専門家焦点研究である説明対話(Explaination Dialogues)を提示する。
調査はオンラインアンケートとフォローアップインタビューで構成されており、クレジットドメインのユースケースを中心に行われている。
我々は、基底理論を用いて階層的および相互接続された符号の集合を抽出し、参加する専門家の立場をXAIに向けて提示する。
提示された説明は、情報を理解して欠くことは困難であり、データコントローラと主題の異なる関心事から生じる問題について議論する。
最後に、XAI手法の開発者に対する勧告と、法的議論領域の表示について述べる。
その中には、説明の提示、選択、内容、技術的リスク、エンドユーザーについて、説明、透明性のしきい値、知的財産権及び関係者間の関係に関する法的指針を提供する。
関連論文リスト
- EXAGREE: Towards Explanation Agreement in Explainable Machine Learning [0.0]
機械学習における説明は、信頼、透明性、公平性に不可欠である。
本稿では,説明可能な機械学習における多種多様な解釈を橋渡しする新しいフレームワークであるExplanation AGREEmentを紹介する。
論文 参考訳(メタデータ) (2024-11-04T10:28:38Z) - How should AI decisions be explained? Requirements for Explanations from the Perspective of European Law [0.20971479389679337]
本稿は、国際的概念や規制はあるものの、ヨーロッパ(および一部ドイツ人)の法律に焦点をあてる。
XAI-タコノミに基づき、XAI(メソッド)の要件はそれぞれの法的根拠から導かれる。
論文 参考訳(メタデータ) (2024-04-19T10:08:28Z) - Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap [4.2330023661329355]
本研究は、説明生成とプレゼンテーションに関連する複雑さについて論じるものである。
私たちのロードマップは、責任ある研究とイノベーションの原則によって支えられています。
これらの研究の方向性を探ることで、説明可能なAVの開発と展開の指針となる。
論文 参考訳(メタデータ) (2024-03-19T11:43:41Z) - Explainability in AI Policies: A Critical Review of Communications,
Reports, Regulations, and Standards in the EU, US, and UK [1.5039745292757671]
我々は、EU、米国、英国における説明可能性に関する政策と標準に関する最初のテーマとギャップの分析を行う。
政策は、しばしば説明のための粗い概念と要求によって知らされる。
本稿では,AIシステムの規則における説明可能性への対処法を提案する。
論文 参考訳(メタデータ) (2023-04-20T07:53:07Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Harnessing value from data science in business: ensuring explainability
and fairness of solutions [0.0]
本稿では、人工知能における公正性と説明可能性(XAI)の概念を紹介し、洗練されたビジネス問題を解決することを目的としている。
公平性に関して、著者らはバイアスを誘発する特異点と関連する緩和方法について議論し、データ駆動型組織に公正性を導入するための一連のレシピを結論付けている。
論文 参考訳(メタデータ) (2021-08-10T11:59:38Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。