Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
- URL: http://arxiv.org/abs/2501.05409v2
- Date: Fri, 10 Jan 2025 16:58:29 GMT
- Title: Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
- Authors: Maximilian Alber, Stephan Tietz, Jonas Dippel, Timo Milbich, Timothée Lesort, Panos Korfiatis, Moritz Krügener, Beatriz Perez Cancer, Neelay Shah, Alexander Möllers, Philipp Seegerer, Alexandra Carpen-Amarie, Kai Standvoss, Gabriel Dernbach, Edwin de Jong, Simon Schallenberg, Andreas Kunft, Helmut Hoffer von Ankershoffen, Gavin Schaeferle, Patrick Duffy, Matt Redlon, Philipp Jurmeister, David Horst, Lukas Ruff, Klaus-Robert Müller, Frederick Klauschen, Andrew Norgan,
- Abstract summary: We present Atlas, a novel vision foundation model based on the RudolfV approach.
Our model was trained on a dataset comprising 1.2 million histopathology whole slide images.
- Score: 61.0008867391683
- License:
- Abstract: Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present Atlas, a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that Atlas achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
Related papers
- BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature [73.39593644054865]
BIOMEDICA is a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.
Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles.
BMCA-CLIP is a suite of CLIP-style models continuously pretrained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.
arXiv Detail & Related papers (2025-01-13T09:58:03Z) - Clinical-grade Multi-Organ Pathology Report Generation for Multi-scale Whole Slide Images via a Semantically Guided Medical Text Foundation Model [3.356716093747221]
We propose a novel Patient-level Multi-organ Pathology Report Generation (PMPRG) model to generate pathology reports for patients.
Our model achieved a METEOR score of 0.68, demonstrating the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-23T22:22:32Z) - Towards A Generalizable Pathology Foundation Model via Unified Knowledge Distillation [29.103863497448433]
Generalizable Pathology Foundation Model (GPFM) is pretrained on a large-scale dataset consisting of 190 million images from around 86,000 public H&E whole slides across 34 major tissue types.
GPFM achieves an impressive average rank of 1.36, with 29 tasks ranked 1st, while the the second-best model, UNI, attains an average rank of 2.96, with only 4 tasks ranked 1st.
arXiv Detail & Related papers (2024-07-26T01:12:54Z) - A Clinical Benchmark of Public Self-Supervised Pathology Foundation Models [2.124312824026935]
We present a collection of pathology datasets comprising clinical slides associated with clinically relevant endpoints including cancer diagnoses and a variety of biomarkers generated during standard hospital operation from two medical centers.
We leverage these datasets to systematically assess the performance of public pathology foundation models and provide insights into best practices for training new foundation models and selecting appropriate pretrained models.
arXiv Detail & Related papers (2024-07-09T02:33:13Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - The Shaky Foundations of Clinical Foundation Models: A Survey of Large
Language Models and Foundation Models for EMRs [5.7482228499062975]
We review over 80 foundation models trained on non-imaging EMR data.
We find that most models are trained on small, narrowly-scoped clinical datasets.
We propose an improved evaluation framework for measuring the benefits of clinical foundation models.
arXiv Detail & Related papers (2023-03-22T23:54:14Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.