論文の概要: Consistent Flow Distillation for Text-to-3D Generation
- arxiv url: http://arxiv.org/abs/2501.05445v1
- Date: Thu, 09 Jan 2025 18:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:51.134718
- Title: Consistent Flow Distillation for Text-to-3D Generation
- Title(参考訳): テキスト・ツー・3次元生成のための一貫した流れ蒸留
- Authors: Runjie Yan, Yinbo Chen, Xiaolong Wang,
- Abstract要約: SDS (Score Distillation Sampling) は3次元画像生成モデルの蒸留に大きく貢献している。
しかし、その最大形状探索行動は、視覚的品質と多様性の低下を招き、その3Dアプリケーションにおける有効性を制限している。
本稿では,これらの制限に対処するコンシスタントフロー蒸留(CFD)を提案する。
- 参考スコア(独自算出の注目度): 14.150490171643034
- License:
- Abstract: Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
- Abstract(参考訳): SDS (Score Distillation Sampling) は3次元画像生成モデルの蒸留に大きく貢献している。
しかし、その最大形状探索行動は、視覚的品質と多様性の低下を招き、その3Dアプリケーションにおける有効性を制限している。
本稿では,これらの制約に対処するCFD(Consistent Flow Distillation)を提案する。
まず拡散ODEまたはSDEサンプリングプロセスの勾配を利用して3次元生成を誘導する。
勾配に基づくサンプリングの観点から、2D画像の整合性は、高品質な3D生成において重要であることが判明した。
これを実現するために,3次元オブジェクトに多視点一貫したガウスノイズを導入する。
実験により,一貫した流れを通したCFDは,テキスト・ツー・3D生成において従来の手法よりも大幅に優れていたことがわかった。
関連論文リスト
- F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
本稿では,モノケプラーデータセットから3次元認識を一般化する問題に取り組む。
画素整列型ガウススプラッティングに基づく新しいフィードフォワードパイプラインを提案する。
また、学習した3D表現において、クロスビューの一貫性を強制するために、自己教師付きサイクル一貫性制約を導入する。
論文 参考訳(メタデータ) (2025-01-12T04:44:44Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
本稿では,ガウスをベースとしたレコンストラクタを用いて,リアルな3Dアセットを生成することで,マルチビュー画像を直接認識するDSplatを紹介した。
実験の結果,DSplatsは高品質で空間的に一貫した出力を生成できるだけでなく,単一画像から3次元再構成への新たな標準も設定できることがわかった。
論文 参考訳(メタデータ) (2024-12-11T07:32:17Z) - GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
本稿では,インタラクティブなポイントクラウド構造ラテント空間を備えたスケーラブルで高品質な3D生成を実現する,新しい3D生成フレームワークを提案する。
本フレームワークでは,複数ビューのRGB-D(epth)-N(ormal)レンダリングを入力として使用する変分オートエンコーダを,3次元形状情報を保存する独自のラテント空間設計を用いて構成する。
提案手法であるGaussianAnythingは,複数モード条件付き3D生成をサポートし,ポイントクラウド,キャプション,シングル/マルチビュー画像入力を可能にする。
論文 参考訳(メタデータ) (2024-11-12T18:59:32Z) - FlowDreamer: Exploring High Fidelity Text-to-3D Generation via Rectified Flow [17.919092916953183]
本研究では,フロードレーマーという新しいフレームワークを提案し,よりリッチなテキストの詳細とより高速なコンバージェンスで高忠実度な結果を得る。
鍵となる洞察は、修正流れモデルの結合性と可逆性を利用して、対応する雑音を探索することである。
我々は,同じ軌道に沿って3次元モデルを最適化するために,新しい一様マッチング結合(UCM)損失を導入する。
論文 参考訳(メタデータ) (2024-08-09T11:40:20Z) - Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling [31.945761751215134]
我々は,3次元一貫したノイズ発生,幾何に基づく勾配のゆらぎ,新しい勾配のゆらぎの損失を導入する。
我々は,テキスト・ツー・3次元生成タスクにおける幾何学的不整合を最小限のコストで解決し,既存のスコア蒸留モデルとの整合性を実現した。
論文 参考訳(メタデータ) (2024-06-24T14:58:17Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
拡散に基づく3次元生成タスクにおいて, ポーズ依存型連続蒸留サンプリング (PCDS) を提案する。
PCDSは拡散軌道内でポーズ依存整合関数を構築し、最小サンプリングステップで真の勾配を近似することができる。
そこで我々は,まず1ステップのPCDSを用いて3Dオブジェクトの基本構造を作成し,さらに徐々にPCDSのステップを拡大して細かな細部を生成する,粗大な最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:21:52Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior [87.55592645191122]
スコア蒸留サンプリング(SDS)とその変種は、テキスト・ツー・3D世代の発展を大幅に加速させたが、幾何崩壊やテクスチャの低下に弱い。
テキストから3D生成に先立ってODE決定論的サンプリングを探索する新しい「一貫性3D」手法を提案する。
実験により,高忠実で多様な3Dオブジェクトと大規模シーンの生成にConsistent3Dの有効性が示された。
論文 参考訳(メタデータ) (2024-01-17T08:32:07Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。