論文の概要: LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models
- arxiv url: http://arxiv.org/abs/2501.05468v1
- Date: Sun, 05 Jan 2025 17:53:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-19 08:09:28.959064
- Title: LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models
- Title(参考訳): LatteReview: 大規模言語モデルを用いたシステムレビュー自動化のためのマルチエージェントフレームワーク
- Authors: Pouria Rouzrokh, Moein Shariatnia,
- Abstract要約: LatteReviewはPythonベースのフレームワークで、大規模言語モデル(LLM)とマルチエージェントシステムを活用して、体系的なレビュープロセスの重要な要素を自動化する。
このフレームワークは、外部コンテキストを組み込むRetrieval-Augmented Generation (RAG)、マルチモーダルレビュー、構造化された入力と出力に対するPydanticベースの検証、大規模データセットを扱う非同期プログラミングなどの機能をサポートしている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Systematic literature reviews and meta-analyses are essential for synthesizing research insights, but they remain time-intensive and labor-intensive due to the iterative processes of screening, evaluation, and data extraction. This paper introduces and evaluates LatteReview, a Python-based framework that leverages large language models (LLMs) and multi-agent systems to automate key elements of the systematic review process. Designed to streamline workflows while maintaining rigor, LatteReview utilizes modular agents for tasks such as title and abstract screening, relevance scoring, and structured data extraction. These agents operate within orchestrated workflows, supporting sequential and parallel review rounds, dynamic decision-making, and iterative refinement based on user feedback. LatteReview's architecture integrates LLM providers, enabling compatibility with both cloud-based and locally hosted models. The framework supports features such as Retrieval-Augmented Generation (RAG) for incorporating external context, multimodal reviews, Pydantic-based validation for structured inputs and outputs, and asynchronous programming for handling large-scale datasets. The framework is available on the GitHub repository, with detailed documentation and an installable package.
- Abstract(参考訳): 体系的な文献レビューとメタアナリシスは、研究洞察の合成に不可欠であるが、スクリーニング、評価、データ抽出の反復的なプロセスのため、時間集約的で労働集約的なままである。
本稿では,大規模言語モデル(LLM)とマルチエージェントシステムを活用するPythonベースのフレームワークであるLatteReviewを紹介し,評価する。
厳格さを維持しながらワークフローを合理化するために設計されたLatteReviewは、タイトルや抽象的なスクリーニング、関連スコアリング、構造化データ抽出といったタスクにモジュールエージェントを使用する。
これらのエージェントはオーケストレーションされたワークフロー内で動作し、シーケンシャルおよび並列なレビューラウンド、動的意思決定、ユーザフィードバックに基づいた反復的な改善をサポートする。
LatteReviewのアーキテクチャはLLMプロバイダを統合し、クラウドベースとローカルにホストされたモデルの両方との互換性を実現する。
このフレームワークは、外部コンテキストを組み込むRetrieval-Augmented Generation (RAG)、マルチモーダルレビュー、構造化された入力と出力に対するPydanticベースの検証、大規模データセットを扱う非同期プログラミングなどの機能をサポートしている。
フレームワークはGitHubリポジトリから入手可能で、詳細なドキュメントとインストール可能なパッケージがある。
関連論文リスト
- SAGEval: The frontiers of Satisfactory Agent based NLG Evaluation for reference-free open-ended text [0.848663031844483]
本稿では,参照/グラウンドラベルが存在しない,あるいは十分に利用できない,自然言語生成のためのロバストな評価手法を開発する必要性を明らかにする。
本研究では,LCM評価器のスコアを補正し,複雑なNLG評価シナリオにおいてもラベル付きデータの必要性を低減できることを示す。
論文 参考訳(メタデータ) (2024-11-25T04:07:16Z) - Revisiting Benchmark and Assessment: An Agent-based Exploratory Dynamic Evaluation Framework for LLMs [29.72874725703848]
従来のQAベンチマークを、より柔軟な"戦略基準"フォーマットに拡張するBenchmark+と、インタラクションプロセスを強化するAccess+という2つの概念を紹介します。
本研究では,これらの概念を検索の強化と強化学習を通じて実装するTestAgentというエージェントベース評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T11:20:42Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
オペレーティングシステム(OS)のコアコンポーネントとして言語モデルを用いるという概念について検討する。
このようなLM OSを実現する上で重要な課題は、寿命の長いコンテキストを管理し、セッション間のステートフルネスを確保することだ。
本稿では,生涯のコンテキスト管理のために設計されたモデル非依存アーキテクチャであるコンプレッサー・レトリバーを紹介する。
論文 参考訳(メタデータ) (2024-09-02T23:28:15Z) - Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions [62.0123588983514]
大規模言語モデル(LLM)は様々な分野にまたがる幅広い応用を実証してきた。
我々は、ピアレビュープロセスを多ターン長文対話として再構築し、著者、レビュアー、意思決定者に対して異なる役割を担っている。
複数の情報源から収集された92,017件のレビューを含む26,841件の論文を含む包括的データセットを構築した。
論文 参考訳(メタデータ) (2024-06-09T08:24:17Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs [74.1976921342982]
本稿では,ユーザフレンドリな評価フレームワークであるUltraEvalを紹介し,その軽量性,包括性,モジュール性,効率性を特徴とする。
その結果のコンポーザビリティにより、統一された評価ワークフロー内で、さまざまなモデル、タスク、プロンプト、ベンチマーク、メトリクスを自由に組み合わせることができる。
論文 参考訳(メタデータ) (2024-04-11T09:17:12Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
研究者や実践者は、しばしば異なるソースからデータセットを手動でキュレートする必要がある。
本稿では,処理モジュールと解析モジュールを統合したデータ処理フレームワークを提案する。
提案されたフレームワークは使いやすく、柔軟です。
論文 参考訳(メタデータ) (2024-02-26T07:22:51Z) - BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives [2.3420045370973828]
複雑な目的を持つ情報検索タスクのベンチマーク(BIRCO)について述べる。
BIRCOは、多面的ユーザ目的のドキュメントを検索するIRシステムの能力を評価する。
論文 参考訳(メタデータ) (2024-02-21T22:22:30Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。