論文の概要: Large Language Model Based Multi-Agent System Augmented Complex Event Processing Pipeline for Internet of Multimedia Things
- arxiv url: http://arxiv.org/abs/2501.00906v2
- Date: Fri, 03 Jan 2025 07:47:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 12:12:22.815492
- Title: Large Language Model Based Multi-Agent System Augmented Complex Event Processing Pipeline for Internet of Multimedia Things
- Title(参考訳): マルチメディアモノのインターネットのための大規模言語モデルに基づく複合イベント処理パイプラインの拡張
- Authors: Talha Zeeshan, Abhishek Kumar, Susanna Pirttikangas, Sasu Tarkoma,
- Abstract要約: 本稿では,複合イベント処理(CEP)のためのLarge Language Model (LLM)ベースのシステムフレームワークの開発と評価について述べる。
第一の目的は概念実証を作ることで、現在のCEPシステムとのLLMの統合に対処するために、最先端のLLMオーケストレーションフレームワークとパブリッシュ/サブスクライブ(pub/sub)ツールを統合することである。
- 参考スコア(独自算出の注目度): 8.729059187561761
- License:
- Abstract: This paper presents the development and evaluation of a Large Language Model (LLM), also known as foundation models, based multi-agent system framework for complex event processing (CEP) with a focus on video query processing use cases. The primary goal is to create a proof-of-concept (POC) that integrates state-of-the-art LLM orchestration frameworks with publish/subscribe (pub/sub) tools to address the integration of LLMs with current CEP systems. Utilizing the Autogen framework in conjunction with Kafka message brokers, the system demonstrates an autonomous CEP pipeline capable of handling complex workflows. Extensive experiments evaluate the system's performance across varying configurations, complexities, and video resolutions, revealing the trade-offs between functionality and latency. The results show that while higher agent count and video complexities increase latency, the system maintains high consistency in narrative coherence. This research builds upon and contributes to, existing novel approaches to distributed AI systems, offering detailed insights into integrating such systems into existing infrastructures.
- Abstract(参考訳): 本稿では,複合イベント処理(CEP)のための多エージェントシステムフレームワークであるLLM(Large Language Model)の開発と評価について述べる。
第一のゴールは概念実証(POC)を作ることで、現在のCEPシステムとのLLMの統合に対処するために、最先端のLLMオーケストレーションフレームワークとパブリッシュ/サブスクライブ(pub/sub)ツールを統合することである。
Kafkaメッセージブローカと組み合わせてAutogenフレームワークを利用することで、複雑なワークフローを処理可能な自律的なCEPパイプラインを実演する。
大規模な実験では、さまざまな構成、複雑度、ビデオ解像度でシステムのパフォーマンスを評価し、機能とレイテンシのトレードオフを明らかにしている。
その結果,より高いエージェント数とビデオの複雑度は遅延を増大させるが,物語コヒーレンスでは高い一貫性を維持していることがわかった。
この研究は、既存の分散AIシステムに対する新しいアプローチを構築し、貢献し、そのようなシステムを既存のインフラに統合するための詳細な洞察を提供する。
関連論文リスト
- Agent-Centric Projection of Prompting Techniques and Implications for Synthetic Training Data for Large Language Models [0.8879149917735942]
本稿では,Large Language Models(LLMs)における線形コンテキスト(連続的な相互作用の連続配列)と非線形コンテキスト(分岐やマルチパス)の概念を紹介し,解説する。
これらの概念は、プロンプト戦略とマルチエージェントシステムとの深い関係を明らかにするフレームワークであるプロンプトテクニックのエージェント中心のプロジェクションの開発を可能にする。
論文 参考訳(メタデータ) (2025-01-14T03:26:43Z) - LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models [0.0]
LatteReviewはPythonベースのフレームワークで、大規模言語モデル(LLM)とマルチエージェントシステムを活用して、体系的なレビュープロセスの重要な要素を自動化する。
このフレームワークは、外部コンテキストを組み込むRetrieval-Augmented Generation (RAG)、マルチモーダルレビュー、構造化された入力と出力に対するPydanticベースの検証、大規模データセットを扱う非同期プログラミングなどの機能をサポートしている。
論文 参考訳(メタデータ) (2025-01-05T17:53:00Z) - AgentPS: Agentic Process Supervision for Multi-modal Content Quality Assurance through Multi-round QA [9.450927573476822]
textitAgentPSは、エージェントプロセススーパービジョンをMLLMに統合する新しいフレームワークである。
textitAgentPSは、プロプライエタリなTikTokデータセット上でのベースラインMLLMよりも大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-12-15T04:58:00Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
インフォメーション・インフォメーション・インフォメーション・クロッピング(ISC)と自己精製デュアルラーニング(SRDL)
Irisは850KのGUIアノテーションだけで、複数のベンチマークで最先端のパフォーマンスを実現している。
これらの改善は、WebとOSエージェントの両方の下流タスクで大幅に向上した。
論文 参考訳(メタデータ) (2024-12-13T18:40:10Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
本稿では,新しいマルチモーダル検索フレームワークであるMLLM (CUE-M) について述べる。
マルチモーダルなQ&Aデータセットとパブリックセーフティベンチマークによる評価は、CUE-Mが精度、知識統合、安全性のベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-11-19T07:16:48Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
オペレーティングシステム(OS)のコアコンポーネントとして言語モデルを用いるという概念について検討する。
このようなLM OSを実現する上で重要な課題は、寿命の長いコンテキストを管理し、セッション間のステートフルネスを確保することだ。
本稿では,生涯のコンテキスト管理のために設計されたモデル非依存アーキテクチャであるコンプレッサー・レトリバーを紹介する。
論文 参考訳(メタデータ) (2024-09-02T23:28:15Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
マルチモーダル出力を有効にした視覚理解のための新しいICLフレームワークを提案する。
まず、テキストと視覚的プロンプトの両方を量子化し、統一された表現空間に埋め込む。
次にデコーダのみのスパーストランスアーキテクチャを用いて生成モデリングを行う。
論文 参考訳(メタデータ) (2023-12-05T06:02:21Z) - Concepts and Algorithms for Agent-based Decentralized and Integrated
Scheduling of Production and Auxiliary Processes [78.120734120667]
本稿ではエージェントベースの分散型統合スケジューリング手法について述べる。
要求の一部は、線形にスケールする通信アーキテクチャを開発することである。
このアプローチは、工業的要件に基づいた例を使って説明されます。
論文 参考訳(メタデータ) (2022-05-06T18:44:29Z) - A Data-Centric Framework for Composable NLP Workflows [109.51144493023533]
アプリケーションドメインにおける経験的自然言語処理システム(例えば、ヘルスケア、ファイナンス、教育)は、複数のコンポーネント間の相互運用を伴う。
我々は,このような高度なNLPの高速な開発を支援するために,統一的なオープンソースフレームワークを構築した。
論文 参考訳(メタデータ) (2021-03-02T16:19:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。