Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
- URL: http://arxiv.org/abs/2501.05501v2
- Date: Mon, 20 Jan 2025 22:06:19 GMT
- Title: Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
- Authors: Jonathan Keane, Sam Keyser, Jeremy Kedziora,
- Abstract summary: We study methods for constructing guardrails for AI agents that use reward functions to learn decision making.
We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior.
- Score: 0.27309692684728604
- License:
- Abstract: The use of reward functions to structure AI learning and decision making is core to the current reinforcement learning paradigm; however, without careful design of reward functions, agents can learn to solve problems in ways that may be considered "undesirable" or "unethical." Without thorough understanding of the incentives a reward function creates, it can be difficult to impose principled yet general control mechanisms over its behavior. In this paper, we study methods for constructing guardrails for AI agents that use reward functions to learn decision making. We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior. We apply our method to study lying in AI agents and show that it can be used to effectively modify agent behavior by suppressing lying post-training without compromising agent ability to perform effectively.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Learning to Steer Markovian Agents under Model Uncertainty [23.603487812521657]
We study how to design additional rewards to steer multi-agent systems towards desired policies.
Motivated by the limitation of existing works, we consider a new category of learning dynamics called emphMarkovian agents
We learn a emphhistory-dependent steering strategy to handle the inherent model uncertainty about the agents' learning dynamics.
arXiv Detail & Related papers (2024-07-14T14:01:38Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.
Recent methods aim to mitigate misalignment by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Efficient Open-world Reinforcement Learning via Knowledge Distillation
and Autonomous Rule Discovery [5.680463564655267]
Rule-driven deep Q-learning agent (RDQ) as one possible implementation of framework.
We show that RDQ successfully extracts task-specific rules as it interacts with the world.
In experiments, we show that the RDQ agent is significantly more resilient to the novelties than the baseline agents.
arXiv Detail & Related papers (2023-11-24T04:12:50Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - On Assessing The Safety of Reinforcement Learning algorithms Using
Formal Methods [6.2822673562306655]
Safety mechanisms such as adversarial training, adversarial detection, and robust learning are not always adapted to all disturbances in which the agent is deployed.
It is therefore necessary to propose new solutions adapted to the learning challenges faced by the agent.
We use reward shaping and a modified Q-learning algorithm as defense mechanisms to improve the agent's policy when facing adversarial perturbations.
arXiv Detail & Related papers (2021-11-08T23:08:34Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Off-Policy Adversarial Inverse Reinforcement Learning [0.0]
Adversarial Imitation Learning (AIL) is a class of algorithms in Reinforcement learning (RL)
We propose an Off-Policy Adversarial Inverse Reinforcement Learning (Off-policy-AIRL) algorithm which is sample efficient as well as gives good imitation performance.
arXiv Detail & Related papers (2020-05-03T16:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.