OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
- URL: http://arxiv.org/abs/2501.05510v1
- Date: Thu, 09 Jan 2025 19:00:01 GMT
- Title: OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
- Authors: Yifei Li, Junbo Niu, Ziyang Miao, Chunjiang Ge, Yuanhang Zhou, Qihao He, Xiaoyi Dong, Haodong Duan, Shuangrui Ding, Rui Qian, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang,
- Abstract summary: OVO-Bench is a novel benchmark for advanced online video understanding capability.
It consists of 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps.
Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding.
- Score: 51.45196331624591
- License:
- Abstract: Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
Related papers
- SVBench: A Benchmark with Temporal Multi-Turn Dialogues for Streaming Video Understanding [56.78088668917983]
We introduce SVBench, a pioneering benchmark with temporal multi-turn question-answering chains.
We design a semi-automated annotation pipeline to obtain 49,979 Question-Answer (QA) pairs of 1,353 streaming videos.
Our experimental results, obtained from 14 models in dialogue and streaming evaluations, reveal that while the closed-source GPT-4o outperforms others, most open-source LVLMs struggle with long-context streaming video understanding.
arXiv Detail & Related papers (2025-02-15T14:29:44Z) - TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBench is a new benchmark dedicated to evaluating fine-grained temporal understanding in videos.
It consists of 10K video question-answer pairs, derived from 2K high-quality human annotations detailing the temporal dynamics in video clips.
Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Temporal Reasoning Transfer from Text to Video [51.68487044397409]
Video Large Language Models (Video LLMs) struggle with tracking temporal changes and reasoning about temporal relationships.
We introduce the Textual Temporal reasoning Transfer (T3) to transfer temporal reasoning abilities from text to video domains.
LongVA-7B model achieves competitive performance on comprehensive video benchmarks.
arXiv Detail & Related papers (2024-10-08T16:10:29Z) - LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding [41.9477837230283]
LongVideoBench is a question-answering benchmark that features video-language interleaved inputs up to an hour long.
Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes.
We formulate a novel video question-answering task termed referring reasoning.
arXiv Detail & Related papers (2024-07-22T16:00:55Z) - Goldfish: Vision-Language Understanding of Arbitrarily Long Videos [51.547065479762715]
We present a methodology tailored for comprehending videos of arbitrary lengths.
We also introduce the TVQA-long benchmark, designed to evaluate models' capabilities in understanding long videos with questions in both vision and text content.
Our results indicate that our models have significant improvements in both long and short-video understanding.
arXiv Detail & Related papers (2024-07-17T15:59:32Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams [78.72965584414368]
We present Flash-VStream, a video-language model that simulates the memory mechanism of human.
Compared to existing models, Flash-VStream achieves significant reductions in latency inference and VRAM consumption.
We propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding.
arXiv Detail & Related papers (2024-06-12T11:07:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.