論文の概要: OmniJet-${α_{ C}}$: Learning point cloud calorimeter simulations using generative transformers
- arxiv url: http://arxiv.org/abs/2501.05534v1
- Date: Thu, 09 Jan 2025 19:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:11.716554
- Title: OmniJet-${α_{ C}}$: Learning point cloud calorimeter simulations using generative transformers
- Title(参考訳): OmniJet-${α_{C}}$:生成変換器を用いた学習点雲カロリーメータシミュレーション
- Authors: Joschka Birk, Frank Gaede, Anna Hallin, Gregor Kasieczka, Martina Mozzanica, Henning Rose,
- Abstract要約: 高粒度温度計における点雲として, 生成型変圧器を用いたカロリーメータを最初に使用した例を示す。
OmniJet-$alpha$モデルのトークン化子と生成部を用いて、検出器のヒットを整数列として表現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We show the first use of generative transformers for generating calorimeter showers as point clouds in a high-granularity calorimeter. Using the tokenizer and generative part of the OmniJet-${\alpha}$ model, we represent the hits in the detector as sequences of integers. This model allows variable-length sequences, which means that it supports realistic shower development and does not need to be conditioned on the number of hits. Since the tokenization represents the showers as point clouds, the model learns the geometry of the showers without being restricted to any particular voxel grid.
- Abstract(参考訳): 高粒度温度計における点雲として, 生成型変圧器を用いたカロリーメータを最初に使用した例を示す。
OmniJet-${\alpha}$モデルのトークン化子と生成部を用いて、検出器のヒットを整数列として表現する。
このモデルでは、可変長シーケンスが可能であるため、現実的なシャワー開発をサポートし、ヒット数で条件付けする必要がなくなる。
トークン化はシャワーを点雲として表現するため、モデルは特定のボクセル格子に制限されずにシャワーの幾何学を学ぶ。
関連論文リスト
- CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation [22.42342223406944]
我々は,「Fast Calorimeter Simulation Challenge 2022 - the CaloChallenge」の結果を提示する。
本研究では,4カロリーのシャワーデータセットの次元性向上に関する最先端生成モデルについて検討した。
論文 参考訳(メタデータ) (2024-10-28T23:28:07Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) は、適応トークン選択機構によって強化された標準PTモデルである。
AdaPTは推論中のトークン数を動的に削減し、大きな点雲の効率的な処理を可能にする。
論文 参考訳(メタデータ) (2024-01-26T13:24:45Z) - General Point Model with Autoencoding and Autoregressive [55.051626723729896]
本稿では,ポイントクラウドトランスにおける自動エンコーディングと自己回帰タスクをシームレスに統合する汎用ポイントモデルを提案する。
このモデルは汎用性が高く、ダウンストリームポイントクラウド表現タスクの微調整や、条件なしおよび条件付き生成タスクが可能である。
論文 参考訳(メタデータ) (2023-10-25T06:08:24Z) - CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
Calorimeter Simulation [0.0]
生成する機械学習モデルは、物理解析において従来のシミュレーションチェーンをスピードアップし、拡張することが示されている。
主要な進歩として最近導入されたCaloCloudsモデルがあり、予想される国際大型検出器(ILD)の電磁熱量計のための点雲としてカロリーメータシャワーを生成する。
この記事では、多数の重要な改善が加えられたCaloClouds IIを紹介します。これには、連続的なスコアベースのモデリングが含まれています。これにより、CaloCloudsに匹敵する25ステップのサンプリングが可能になり、単一のCPU上でGeant4よりも6倍のスピードアップを実現します。
論文 参考訳(メタデータ) (2023-09-11T18:00:02Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
2つの最先端スコアベースのモデルが、同じカロリーメータのシミュレーションに基づいてトレーニングされ、直接比較される。
生成モデルは、高次元のカロリーメーターデータセットを正確に生成することが示されている新しい生成モデルのクラスである。
論文 参考訳(メタデータ) (2023-07-10T08:20:45Z) - CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter
Simulation [0.0]
高粒度検出器における粒子のシャワーのシミュレーションは、粒子物理学への機械学習の適用における重要なフロンティアである。
この研究は、初めて数千の空間点の点雲を3次元空間の検出器で直接生成し、固定格子構造に頼ることなく大きなブレークスルーを成し遂げた。
論文 参考訳(メタデータ) (2023-05-08T16:44:15Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
本研究では, 幾何線量に基づく幾何学的自己回帰モデルを構築した。
これは、新しい目に見えないカロリーメーターに一般化できるモデルを構築するための、概念実証の重要なステップである。
このようなモデルは、大型ハドロン衝突型加速器実験において、カロリーメータシミュレーションに使用される数百の生成モデルを置き換えることができる。
論文 参考訳(メタデータ) (2022-12-16T01:45:17Z) - Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point
Modeling [104.82953953453503]
BERTの概念を3Dポイントクラウドに一般化するための新しいパラダイムであるPoint-BERTを提案する。
提案したBERTスタイルの事前学習戦略は,標準点クラウドトランスフォーマーの性能を著しく向上することを示す実験である。
論文 参考訳(メタデータ) (2021-11-29T18:59:03Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々はまた、ポイントクラウド補完のためにトランスフォーマーエンコーダデコーダアーキテクチャを採用するPoinTrと呼ばれる新しいモデルも設計している。
提案手法は,新しいベンチマークと既存ベンチマークの両方において,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T17:58:56Z) - Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets
for 3D Generation, Reconstruction and Classification [136.57669231704858]
エネルギーモデルを用いて, 点雲などの無秩序点集合の生成モデルを提案する。
我々はこのモデルをジェネレーティブ・ポイントネット(Generative PointNet)と呼んでいる。
論文 参考訳(メタデータ) (2020-04-02T23:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。