論文の概要: Datasheets for Healthcare AI: A Framework for Transparency and Bias Mitigation
- arxiv url: http://arxiv.org/abs/2501.05617v1
- Date: Thu, 09 Jan 2025 23:36:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:47.789145
- Title: Datasheets for Healthcare AI: A Framework for Transparency and Bias Mitigation
- Title(参考訳): 医療AIのためのデータシート:透明性とバイアス軽減のためのフレームワーク
- Authors: Marjia Siddik, Harshvardhan J. Pandit,
- Abstract要約: トレーニングデータセットにおけるバイアス、データ不完全性、不正確性は、不公平な結果をもたらし、既存の格差を増幅する。
透明性を促進し,規制要件との整合性を確保するためのデータセットドキュメンテーションフレームワークを提案する。
この発見は、責任あるAI開発を促進する上で、データセットドキュメンテーションの重要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The use of AI in healthcare has the potential to improve patient care, optimize clinical workflows, and enhance decision-making. However, bias, data incompleteness, and inaccuracies in training datasets can lead to unfair outcomes and amplify existing disparities. This research investigates the current state of dataset documentation practices, focusing on their ability to address these challenges and support ethical AI development. We identify shortcomings in existing documentation methods, which limit the recognition and mitigation of bias, incompleteness, and other issues in datasets. We propose the 'Healthcare AI Datasheet' to address these gaps, a dataset documentation framework that promotes transparency and ensures alignment with regulatory requirements. Additionally, we demonstrate how it can be expressed in a machine-readable format, facilitating its integration with datasets and enabling automated risk assessments. The findings emphasise the importance of dataset documentation in fostering responsible AI development.
- Abstract(参考訳): 医療におけるAIの使用は、患者のケアを改善し、臨床ワークフローを最適化し、意思決定を強化する可能性がある。
しかし、トレーニングデータセットにおけるバイアス、データ不完全性、不正確性は、不公平な結果をもたらし、既存の格差を増幅する。
本研究は、これらの課題に対処し、倫理的AI開発を支援する能力に焦点を当て、データセットドキュメンテーションの実践の現状を調査する。
既存のドキュメンテーション手法の欠点を特定し、データセットにおけるバイアス、不完全性、その他の問題の認識と緩和を制限する。
透明性を促進し、規制要件との整合性を確保するデータセットドキュメンテーションフレームワークである。
さらに、マシン可読形式でどのように表現できるかを示し、データセットとの統合を容易にし、自動リスクアセスメントを可能にします。
この発見は、責任あるAI開発を促進する上で、データセットドキュメンテーションの重要性を強調している。
関連論文リスト
- AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Challenges for Responsible AI Design and Workflow Integration in Healthcare: A Case Study of Automatic Feeding Tube Qualification in Radiology [35.284458448940796]
ナトリウムガスチューブ(NGT)は、鼻から胃に挿入されたチューブを供給し、栄養や薬品を供給している。
近年のAI開発は、チェストX線画像からNGT配置を堅牢に検出する可能性を示している。
本稿では,この問題に対する人間中心のアプローチを提案するとともに,コンテキスト調査および15の臨床ステークホルダとの詳細なインタビューの結果から得られた知見について述べる。
論文 参考訳(メタデータ) (2024-05-08T14:16:22Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - Collect, Measure, Repeat: Reliability Factors for Responsible AI Data
Collection [8.12993269922936]
AIのデータ収集は責任ある方法で行うべきだと我々は主張する。
本稿では,データ収集をメトリクスの集合でガイドするResponsible AI(RAI)手法を提案する。
論文 参考訳(メタデータ) (2023-08-22T18:01:27Z) - Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey [6.277848092408045]
データ品質は、医療において信頼できるAIを開発する上で重要な要素である。
高品質なデータセットへのアクセスは、データ取得の技術的困難によって制限される。
医療データの大規模な共有は、厳格な倫理的制約によって妨げられている。
論文 参考訳(メタデータ) (2022-09-17T13:34:17Z) - Benchmark datasets driving artificial intelligence development fail to
capture the needs of medical professionals [4.799783526620609]
臨床およびバイオメディカル自然言語処理(NLP)の幅広い領域に関するデータセットとベンチマークのカタログを公開した。
450のNLPデータセットが手動で体系化され、豊富なメタデータで注釈付けされた。
我々の分析は、AIベンチマークの直接臨床関連性は乏しく、臨床医が対応したい仕事のほとんどをカバーできないことを示唆している。
論文 参考訳(メタデータ) (2022-01-18T15:05:28Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。