Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport
- URL: http://arxiv.org/abs/2501.05635v1
- Date: Fri, 10 Jan 2025 00:42:27 GMT
- Title: Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport
- Authors: Yonghao Liu, Fausto Giunchiglia, Ximing Li, Lan Huang, Xiaoyue Feng, Renchu Guan,
- Abstract summary: Recent advancements in graph few-shot learning models have exhibited superior performance across diverse applications.
We propose a novel model named STAR, which enhances unsupervised graph few-shot learning.
- Score: 23.36436403062214
- License:
- Abstract: Graph few-shot learning has garnered significant attention for its ability to rapidly adapt to downstream tasks with limited labeled data, sparking considerable interest among researchers. Recent advancements in graph few-shot learning models have exhibited superior performance across diverse applications. Despite their successes, several limitations still exist. First, existing models in the meta-training phase predominantly focus on instance-level features within tasks, neglecting crucial set-level features essential for distinguishing between different categories. Second, these models often utilize query sets directly on classifiers trained with support sets containing only a few labeled examples, overlooking potential distribution shifts between these sets and leading to suboptimal performance. Finally, previous models typically require necessitate abundant labeled data from base classes to extract transferable knowledge, which is typically infeasible in real-world scenarios. To address these issues, we propose a novel model named STAR, which leverages Set funcTions and optimAl tRansport for enhancing unsupervised graph few-shot learning. Specifically, STAR utilizes expressive set functions to obtain set-level features in an unsupervised manner and employs optimal transport principles to align the distributions of support and query sets, thereby mitigating distribution shift effects. Theoretical analysis demonstrates that STAR can capture more task-relevant information and enhance generalization capabilities. Empirically, extensive experiments across multiple datasets validate the effectiveness of STAR. Our code can be found here.
Related papers
- Instance-Aware Graph Prompt Learning [71.26108600288308]
We introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper.
The process involves generating intermediate prompts for each instance using a lightweight architecture.
Experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-11-26T18:38:38Z) - Active Prompt Learning with Vision-Language Model Priors [9.173468790066956]
We introduce a class-guided clustering that leverages the pre-trained image and text encoders of vision-language models.
We propose a budget-saving selective querying based on adaptive class-wise thresholds.
arXiv Detail & Related papers (2024-11-23T02:34:33Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained Ship Classification [59.99976102069976]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning [10.57079240576682]
We introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available.
In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset.
We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings.
arXiv Detail & Related papers (2023-03-20T13:38:29Z) - Improving Meta-Learning Generalization with Activation-Based
Early-Stopping [12.299371455015239]
Meta-Learning algorithms for few-shot learning aim to train neural networks capable of generalizing to novel tasks using only a few examples.
Early-stopping is critical for performance, halting model training when it reaches optimal generalization to the new task distribution.
This is problematic in few-shot transfer learning settings, where the meta-test set comes from a different target dataset.
arXiv Detail & Related papers (2022-08-03T22:55:45Z) - Learning Prototype-oriented Set Representations for Meta-Learning [85.19407183975802]
Learning from set-structured data is a fundamental problem that has recently attracted increasing attention.
This paper provides a novel optimal transport based way to improve existing summary networks.
We further instantiate it to the cases of few-shot classification and implicit meta generative modeling.
arXiv Detail & Related papers (2021-10-18T09:49:05Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task
Generalization in Few-shot Learning [1.0062040918634414]
Few-shot learning algorithms are designed to generalize well to new tasks with limited data.
We introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data.
arXiv Detail & Related papers (2020-09-23T17:01:09Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Diversity Helps: Unsupervised Few-shot Learning via Distribution
Shift-based Data Augmentation [21.16237189370515]
Few-shot learning aims to learn a new concept when only a few training examples are available.
In this paper, we develop a novel framework called Unsupervised Few-shot Learning via Distribution Shift-based Data Augmentation.
In experiments, few-shot models learned by ULDA can achieve superior generalization performance.
arXiv Detail & Related papers (2020-04-13T07:41:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.