論文の概要: Development and Comparison of Model-Based and Data-Driven Approaches for the Prediction of the Mechanical Properties of Lattice Structures
- arxiv url: http://arxiv.org/abs/2501.05762v1
- Date: Fri, 10 Jan 2025 07:38:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:07.355045
- Title: Development and Comparison of Model-Based and Data-Driven Approaches for the Prediction of the Mechanical Properties of Lattice Structures
- Title(参考訳): 格子構造の力学特性予測のためのモデルベースおよびデータ駆動手法の開発と比較
- Authors: Chiara Pasini, Oscar Ramponi, Stefano Pandini, Luciana Sartore, Giulia Scalet,
- Abstract要約: 本稿では, 溶融沈着モデル3Dプリンティングにより作製された各種格子構造の力学特性と空隙体積率との相関関係を記述し, 理解し, 予測するために, 様々なモデリング手法を提案し, 比較する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Lattice structures have great potential for several application fields ranging from medical and tissue engineering to aeronautical one. Their development is further speeded up by the continuing advances in additive manufacturing technologies that allow to overcome issues typical of standard processes and to propose tailored designs. However, the design of lattice structures is still challenging since their properties are considerably affected by numerous factors. The present paper aims to propose, discuss, and compare various modeling approaches to describe, understand, and predict the correlations between the mechanical properties and the void volume fraction of different types of lattice structures fabricated by fused deposition modeling 3D printing. Particularly, four approaches are proposed: (i) a simplified analytical model; (ii) a semi-empirical model combining analytical equations with experimental correction factors; (iii) an artificial neural network trained on experimental data; (iv) numerical simulations by finite element analyses. The comparison among the various approaches, and with experimental data, allows to identify the performances, advantages, and disadvantages of each approach, thus giving important guidelines for choosing the right design methodology based on the needs and available data.
- Abstract(参考訳): 格子構造は、医学や組織工学から航空工学まで、いくつかの応用分野において大きな可能性を秘めている。
彼らの開発は、標準プロセスの典型的な問題を克服し、調整された設計を提案できる付加的な製造技術の継続的な進歩によってさらにスピードアップしている。
しかし、格子構造の設計は、その特性が多くの要因に大きく影響されているため、いまだに困難である。
本稿では, 3Dプリンティング法を用いて作製した格子構造の力学特性と空隙体積率の相関関係を記述し, 理解し, 予測するために, 様々なモデリング手法を提案し, 議論し, 比較することを目的とする。
特に4つのアプローチが提案されている。
一 簡易解析モデル
二 分析方程式と実験的補正係数を組み合わせた半経験的モデル
三 実験データに基づく人工ニューラルネットワーク
(4)有限要素解析による数値シミュレーション。
様々なアプローチと実験データの比較により、それぞれのアプローチのパフォーマンス、利点、デメリットを識別することができ、ニーズと利用可能なデータに基づいて適切な設計方法論を選択するための重要なガイドラインを提供する。
関連論文リスト
- Heterogeneous Transfer Learning for Building High-Dimensional Generalized Linear Models with Disparate Datasets [0.0]
本稿では,高次元一般化線形モデル構築のための伝達学習手法について述べる。
我々は、すべての予測器に関する詳細な情報と、より限定された予測器のセットを持つ、より大きい、潜在的にはるかに大きな研究データを用いて、主研究からのデータを使用します。
論文 参考訳(メタデータ) (2023-12-20T06:11:59Z) - From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication [19.336940758147442]
異なるニューラルネットワークによって学習された表現は、モデルが同様の誘導バイアスの下で訓練されたときに構造的類似性を隠蔽することが観察されている。
我々は,不変成分の積空間を潜在表現の上に構築し,その表現に不変量の集合を直接組み込む汎用的手法を導入する。
我々は,ゼロショット縫合設定において,一貫した遅延類似性および下流性能向上を観察し,分類および再構成タスクに対するソリューションの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-02T13:55:38Z) - Efficient Surrogate Models for Materials Science Simulations: Machine
Learning-based Prediction of Microstructure Properties [0.0]
いくつかの機械学習アルゴリズムがこれらの科学分野に応用され、シミュレーションモデルや代理モデルを強化し、加速している。
材料科学分野の2つの異なるデータセットに基づいて,6つの機械学習技術の応用について検討する。
論文 参考訳(メタデータ) (2023-09-01T07:29:44Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Deep learning for the rare-event rational design of 3D printed
multi-material mechanical metamaterials [0.0]
マルチマテリアル3Dプリンティング技術は、メタマテリアルの合理的設計の道を開いた。
ネットワークの結果として生じる異方性力学特性と,特に稀な設計について検討する。
ディープラーニングに基づくアルゴリズムは、異なる設計の機械的特性を正確に予測することができる。
論文 参考訳(メタデータ) (2022-04-04T18:04:23Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。