論文の概要: Deontic Temporal Logic for Formal Verification of AI Ethics
- arxiv url: http://arxiv.org/abs/2501.05765v1
- Date: Fri, 10 Jan 2025 07:48:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:45.548485
- Title: Deontic Temporal Logic for Formal Verification of AI Ethics
- Title(参考訳): AI倫理の形式的検証のためのDeontic Temporal Logic
- Authors: Priya T. V., Shrisha Rao,
- Abstract要約: 本稿では,AIシステムの倫理的行動を定義し評価するために,デオン論理に基づく形式化を提案する。
公理と定理を導入し、公正性と説明可能性に関する倫理的要件を捉えている。
筆者らは,実世界のCompASとローン予測AIシステムの倫理性を評価することにより,この形式化の有効性を評価する。
- 参考スコア(独自算出の注目度): 4.028503203417233
- License:
- Abstract: Ensuring ethical behavior in Artificial Intelligence (AI) systems amidst their increasing ubiquity and influence is a major concern the world over. The use of formal methods in AI ethics is a possible crucial approach for specifying and verifying the ethical behavior of AI systems. This paper proposes a formalization based on deontic logic to define and evaluate the ethical behavior of AI systems, focusing on system-level specifications, contributing to this important goal. It introduces axioms and theorems to capture ethical requirements related to fairness and explainability. The formalization incorporates temporal operators to reason about the ethical behavior of AI systems over time. The authors evaluate the effectiveness of this formalization by assessing the ethics of the real-world COMPAS and loan prediction AI systems. Various ethical properties of the COMPAS and loan prediction systems are encoded using deontic logical formulas, allowing the use of an automated theorem prover to verify whether these systems satisfy the defined properties. The formal verification reveals that both systems fail to fulfill certain key ethical properties related to fairness and non-discrimination, demonstrating the effectiveness of the proposed formalization in identifying potential ethical issues in real-world AI applications.
- Abstract(参考訳): 人工知能(AI)システムにおける倫理的行動の確保は、そのユビキティと影響力の増大の中で、世界にとって大きな関心事である。
AI倫理における形式的手法の使用は、AIシステムの倫理的行動を特定し検証するための重要なアプローチである。
本稿では,この重要な目標に寄与するシステムレベルの仕様に着目し,AIシステムの倫理的行動を定義し,評価するためのデオン論理に基づく形式化を提案する。
公理と定理を導入し、公正性と説明可能性に関する倫理的要件を捉えている。
この形式化は、時間とともにAIシステムの倫理的振る舞いを推論するために、時間的オペレーターを取り入れている。
筆者らは,実世界のCompASとローン予測AIシステムの倫理性を評価することにより,この形式化の有効性を評価する。
CompASとローン予測システムの様々な倫理的性質は、デオン論理式を用いて符号化され、自動定理証明器を用いて、これらのシステムが定義された性質を満たすかどうかを検証できる。
形式的検証は、どちらのシステムも公正性と非差別に関連する重要な倫理的特性を達成できず、現実のAIアプリケーションにおける潜在的な倫理的問題を特定する上で、提案された形式化の有効性を実証している。
関連論文リスト
- Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits [1.7205106391379026]
AIシステムは自律性と適応性で機能するので、技術的社会システムにおける伝統的な道徳的責任の境界が課題となっている。
本稿では,知的自律エージェントへの責任委譲に関する議論の進展と,そのような実践の倫理的意味について考察する。
論文 参考訳(メタデータ) (2024-11-06T18:40:38Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
AI倫理に関する一般的な言説は、AIシステムが個人と対話する際に生じる多様な倫理的懸念を捉えるのに必要な言語や形式主義を欠いている。
本稿では、利害関係者に有意義な利益や援助を与えるために、AIシステムに必要な倫理的概念と権利のネットワークを定式化する枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-01T22:38:14Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
原則に基づく倫理保証議論パターンは、AI倫理のランドスケープにおける1つの提案である。
本稿では,AIベースの遠隔医療システムであるDoraの利用に対して,この倫理保証フレームワークを適用した事例研究の中間的結果を示す。
論文 参考訳(メタデータ) (2023-05-23T16:04:59Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Why we need biased AI -- How including cognitive and ethical machine
biases can enhance AI systems [0.0]
学習アルゴリズムにおける人間の認知バイアスの構造的実装について論じる。
倫理的マシン動作を達成するには、フィルタ機構を適用する必要がある。
本論文は、機械バイアスの倫理的重要性を再評価するアイデアを明示的に追求する最初の仮段階である。
論文 参考訳(メタデータ) (2022-03-18T12:39:35Z) - Ethics Sheets for AI Tasks [25.289525325790414]
私は、個々のモデルやデータセットのレベルだけでなく、AIタスクのレベルにおいても倫理的考慮事項について考えることにしました。
このような取り組みの新たな形態として、AIタスクのための倫理表(Ethics Sheets for AI Tasks)を紹介します。
論文 参考訳(メタデータ) (2021-07-02T16:45:40Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。