論文の概要: Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products
- arxiv url: http://arxiv.org/abs/2501.05768v1
- Date: Fri, 10 Jan 2025 07:56:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:13.323350
- Title: Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products
- Title(参考訳): Halal or not: 日用品の文化的適切性を予測するための知識グラフ補完
- Authors: Van Thuy Hoang, Tien-Bach-Thanh Do, Jinho Seo, Seung Charlie Kim, Luong Vuong Nguyen, Duong Nguyen Minh Huy, Hyeon-Ju Jeon, O-Joun Lee,
- Abstract要約: 本研究では,化粧品と化粧品成分の関係をモデル化・把握するためのハラル化粧品推薦フレームワーク,すなわちHaCKGを提案する。
まず, 化粧品, 材料, その特性の関連性を表す化粧知識グラフを構築した。
そこで我々は,知識グラフにおけるエンティティ間の構造的関係を学習するために,残差接続を有する事前学習された関係グラフ注意ネットワークモデルを提案する。
- 参考スコア(独自算出の注目度): 1.3981430132921782
- License:
- Abstract: The growing demand for halal cosmetic products has exposed significant challenges, especially in Muslim-majority countries. Recently, various machine learning-based strategies, e.g., image-based methods, have shown remarkable success in predicting the halal status of cosmetics. However, these methods mainly focus on analyzing the discrete and specific ingredients within separate cosmetics, which ignore the high-order and complex relations between cosmetics and ingredients. To address this problem, we propose a halal cosmetic recommendation framework, namely HaCKG, that leverages a knowledge graph of cosmetics and their ingredients to explicitly model and capture the relationships between cosmetics and their components. By representing cosmetics and ingredients as entities within the knowledge graph, HaCKG effectively learns the high-order and complex relations between entities, offering a robust method for predicting halal status. Specifically, we first construct a cosmetic knowledge graph representing the relations between various cosmetics, ingredients, and their properties. We then propose a pre-trained relational graph attention network model with residual connections to learn the structural relation between entities in the knowledge graph. The pre-trained model is then fine-tuned on downstream cosmetic data to predict halal status. Extensive experiments on the cosmetic dataset over halal prediction tasks demonstrate the superiority of our model over state-of-the-art baselines.
- Abstract(参考訳): ハラル化粧品の需要が高まっているため、特にイスラム教徒の国々では大きな課題が表面化している。
近年, 化粧品のハラル状態を予測するために, 様々な機械学習的手法, 画像ベース手法が顕著に成功している。
しかし、これらの手法は主に、化粧品と具材との高次・複雑な関係を無視した、別個の化粧品内の個別・特定成分の分析に重点を置いている。
この問題を解決するために,化粧品とその成分の知識グラフを利用して化粧品と成分の関係を明示的にモデル化・把握するハラル化粧品推薦フレームワーク(HaCKG)を提案する。
化粧品や材料を知識グラフ内のエンティティとして表現することにより、HaCKGはエンティティ間の高次および複雑な関係を効果的に学習し、ハラル状態を予測する堅牢な方法を提供する。
具体的には,まず化粧品,材料,その特性の関係を表す化粧知識グラフを構築した。
そこで我々は,知識グラフにおけるエンティティ間の構造的関係を学習するために,残差接続を有する事前学習された関係グラフ注意ネットワークモデルを提案する。
事前訓練されたモデルは、下流の化粧品データに基づいて微調整され、ハラル状態を予測する。
ハラル予測タスクに対する化粧品データセットの広範な実験は、我々のモデルが最先端のベースラインよりも優れていることを示す。
関連論文リスト
- Molecular Contrastive Learning with Chemical Element Knowledge Graph [16.136921143416927]
分子表現学習は、分子特性予測や薬物設計など、下流の複数のタスクに寄与する。
我々は,元素間の微視的関連を要約するケミカル要素知識グラフ(KG)を構築した。
最初のモジュールである知識誘導グラフ拡張は、ケミカル要素KGに基づいて元の分子グラフを増強する。
第2のモジュールである知識対応グラフ表現は、元の分子グラフの共通グラフエンコーダと知識対応メッセージパッシングニューラルネットワーク(KMPNN)を用いて分子表現を抽出し、拡張された分子グラフの複雑な情報をエンコードする。
論文 参考訳(メタデータ) (2021-12-01T15:04:39Z) - GCNBoost: Artwork Classification by Label Propagation through a
Knowledge Graph [32.129005474301735]
文脈情報はしばしば、そのような現実世界のデータを構成する鍵であり、知識グラフの形で使用することを提案する。
本稿では,注釈付きデータと擬似ラベル付きデータに基づいて構築された知識グラフの新たな利用法を提案する。
ラベルの伝搬により、グラフ畳み込みネットワークを用いてモデルを訓練することにより、アートワークの分類を向上する。
論文 参考訳(メタデータ) (2021-05-25T11:50:05Z) - A Graph Neural Network Approach for Product Relationship Prediction [10.404936340171384]
GraphSAGEと呼ばれる誘導グラフニューラルネットワークアプローチが、ノードとエッジの連続表現を効率的に学習する方法を示す。
中国自動車市場のケーススタディを用いて,提案手法が予測性能を2倍にすることを確認した。
論文 参考訳(メタデータ) (2021-05-12T18:18:38Z) - Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations [40.37976161857134]
製品ランキングの精度を向上させるためにパーソナライズされた機能を活用する新しいフレームワークを提案する。
まず、顧客購入履歴と製品知識グラフからオープンソースの異種知識グラフを作成し、顧客と製品の埋め込みを共同で学習します。
その後、プロダクト、顧客、履歴の表現をニューラルリランキングモデルに組み込んで、どの候補が特定の顧客に購入される可能性が最も高いかを予測します。
論文 参考訳(メタデータ) (2021-04-06T16:58:27Z) - Tensor Composition Net for Visual Relationship Prediction [115.14829858763399]
画像の視覚的関係を予測するための新しいコンポジションネットワーク(TCN)を提案する。
TCNの鍵となる考え方は、視覚的関係テンソルの低階特性を利用することである。
本稿では,ttcnの画像レベルの視覚関係予測により,画像検索の簡便かつ効率的なメカニズムを示す。
論文 参考訳(メタデータ) (2020-12-10T06:27:20Z) - Improving Long-Tail Relation Extraction with Collaborating
Relation-Augmented Attention [63.26288066935098]
本稿では,ニューラルネットワーク,コラボレーティング・リレーショナル・アテンション(CoRA)を提案する。
一般的なベンチマークデータセットNYTの実験では、提案されたCoRAは、最先端のパフォーマンスを大きなマージンで改善する。
論文 参考訳(メタデータ) (2020-10-08T05:34:43Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
文脈型言語と知識埋め込み(CoLAKE)を提案する。
CoLAKEは、言語と知識の両方の文脈化された表現を、拡張された目的によって共同で学習する。
知識駆動タスク、知識探索タスク、言語理解タスクについて実験を行う。
論文 参考訳(メタデータ) (2020-10-01T11:39:32Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - Cosmetic-Aware Makeup Cleanser [109.41917954315784]
顔認証は、一対の顔画像が同一のアイデンティティに属するかどうかを判定することを目的としている。
最近の研究では、顔の化粧が検証性能に悪影響を及ぼすことが明らかになっている。
本稿では,異なるポーズや表情で顔の化粧を除去する意味認識型化粧清浄器(SAMC)を提案する。
論文 参考訳(メタデータ) (2020-04-20T09:18:23Z) - Learning Oracle Attention for High-fidelity Face Completion [121.72704525675047]
U-Net構造に基づく顔補完のための包括的フレームワークを設計する。
複数のスケールで顔のテクスチャ間の相関関係を効率よく学習する双対空間アテンションモジュールを提案する。
顔成分の位置を事前の知識として捉え,これらの領域に複数識別器を課す。
論文 参考訳(メタデータ) (2020-03-31T01:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。