論文の概要: STHFL: Spatio-Temporal Heterogeneous Federated Learning
- arxiv url: http://arxiv.org/abs/2501.05775v1
- Date: Fri, 10 Jan 2025 08:15:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:23.794988
- Title: STHFL: Spatio-Temporal Heterogeneous Federated Learning
- Title(参考訳): STHFL:時空間不均一なフェデレーションラーニング
- Authors: Shunxin Guo, Hongsong Wang, Shuxia Lin, Xu Yang, Xin Geng,
- Abstract要約: フェデレーション学習は、データのプライバシを保護する新しいフレームワークであり、複数のデバイスが機械学習モデルのトレーニングに協力できるようにする。
従来の研究では、非IDデータやドメイン間問題による課題を排除するために、複数のアプローチが提案されている。
本研究では,STHFLのためのグローバルローカル動的プロトタイプ(GLDP)フレームワークであるtextbfSpatio-temporal Heterogeneity Federated Learning (STHFL)を提案する。
- 参考スコア(独自算出の注目度): 39.32313754519315
- License:
- Abstract: Federated learning is a new framework that protects data privacy and allows multiple devices to cooperate in training machine learning models. Previous studies have proposed multiple approaches to eliminate the challenges posed by non-iid data and inter-domain heterogeneity issues. However, they ignore the \textbf{spatio-temporal} heterogeneity formed by different data distributions of increasing task data in the intra-domain. Moreover, the global data is generally a long-tailed distribution rather than assuming the global data is balanced in practical applications. To tackle the \textbf{spatio-temporal} dilemma, we propose a novel setting named \textbf{Spatio-Temporal Heterogeneity} Federated Learning (STHFL). Specially, the Global-Local Dynamic Prototype (GLDP) framework is designed for STHFL. In GLDP, the model in each client contains personalized layers which can dynamically adapt to different data distributions. For long-tailed data distribution, global prototypes are served as complementary knowledge for the training on classes with few samples in clients without leaking privacy. As tasks increase in clients, the knowledge of local prototypes generated in previous tasks guides for training in the current task to solve catastrophic forgetting. Meanwhile, the global-local prototypes are updated through the moving average method after training local prototypes in clients. Finally, we evaluate the effectiveness of GLDP, which achieves remarkable results compared to state-of-the-art methods in STHFL scenarios.
- Abstract(参考訳): フェデレーション学習は、データのプライバシを保護する新しいフレームワークであり、複数のデバイスが機械学習モデルのトレーニングに協力できるようにする。
従来の研究では、非イドデータやドメイン間不均一性の問題によって引き起こされる課題を取り除くために、複数のアプローチが提案されている。
しかし、それらはドメイン内におけるタスクデータの増加の異なるデータ分布によって形成される \textbf{spatio-temporal} の不均一性を無視している。
さらに、グローバルデータは、実際的なアプリケーションではバランスが取れていると仮定するのではなく、一般的に長い尾の分布である。
本稿では,「textbf{spatio-temporal} dilemma」の課題に取り組むために,「textbf{Spatio-Temporal Heterogeneity} Federated Learning(STHFL)」という新しい設定を提案する。
特にGlobal-Local Dynamic Prototype (GLDP) フレームワークはSTHFL用に設計されている。
GLDPでは、各クライアントのモデルはパーソナライズされたレイヤを含み、異なるデータ分散に動的に適応できる。
長期データ配信では、グローバルプロトタイプは、プライバシーを漏らさずに、クライアントのサンプルが少ないクラスでトレーニングを行うための補完的な知識として機能する。
タスクがクライアントで増加するにつれて、以前のタスクで生成されたローカルプロトタイプの知識は、破滅的な忘れを解くために現在のタスクでトレーニングするためのガイドとなる。
一方、グローバルなローカルプロトタイプは、クライアントでローカルプロトタイプをトレーニングした後、移動平均方式で更新される。
最後に,STHFLシナリオにおける最先端手法と比較して,優れた結果が得られるGLDPの有効性を評価する。
関連論文リスト
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
フェデレーション学習は、分散機械学習におけるプライバシの保護という課題にパラダイムを提供する。
伝統的なアプローチは、グローバルな長期データにおけるクラスワイドバイアスの現象に対処できない。
新しい手法であるFedLFは、適応ロジット調整、連続クラス中心最適化、特徴デコリレーションという、局所的なトレーニングフェーズに3つの修正を導入している。
論文 参考訳(メタデータ) (2024-09-18T16:25:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) は、クライアントがローカルモデルを訓練するために知識蒸留に依存する新しいFLアルゴリズムである。
他のKDベースのpFLメソッドとは異なり、FedHKDはパブリックデータセットに依存したり、サーバに生成モデルをデプロイしたりしない。
さまざまなシナリオにおける視覚的データセットに関する広範な実験を行い、FedHKDがパーソナライズおよびグローバルモデルパフォーマンスの両方において、大幅な改善を提供することを示した。
論文 参考訳(メタデータ) (2023-01-21T16:20:57Z) - Personalized Federated Learning with Hidden Information on Personalized
Prior [18.8426865970643]
本稿では,Bregmanの発散正規化を用いたモデル化のためのフレームワークであるpFedBreDを提案する。
実験の結果,提案手法は複数の公開ベンチマークにおいて他のPFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-19T12:45:19Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
フェデレーション学習アルゴリズムは、ユーザのデバイスに格納された分散および多様なデータを活用して、グローバルな現象を学習することを目的としている。
参加者のデータが強く歪んだ場合(例えば、非iidの場合)、ローカルモデルはローカルデータに過剰に適合し、低パフォーマンスなグローバルモデルに繋がる。
ユーザエッジ層にFederated Gradient Descent、エッジクラウド層にFederated Averagingを実行する階層学習システムを提案する。
論文 参考訳(メタデータ) (2020-12-10T12:18:13Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
フェデレートラーニング(Federated Learning)とは、複数のデバイスに分散したプライベートデータ上でモデルをトレーニングする手法である。
本稿では,各デバイス上でコンパクトな局所表現を共同で学習する新しいフェデレーション学習アルゴリズムを提案する。
また、プライバシが鍵となる実世界のモバイルデータから、パーソナライズされた気分予測のタスクを評価する。
論文 参考訳(メタデータ) (2020-01-06T12:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。