論文の概要: MARS6: A Small and Robust Hierarchical-Codec Text-to-Speech Model
- arxiv url: http://arxiv.org/abs/2501.05787v1
- Date: Fri, 10 Jan 2025 08:41:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:59.837095
- Title: MARS6: A Small and Robust Hierarchical-Codec Text-to-Speech Model
- Title(参考訳): MARS6: 小型かつロバストな階層型テキスト音声合成モデル
- Authors: Matthew Baas, Pieter Scholtz, Arnav Mehta, Elliott Dyson, Akshat Prakash, Herman Kamper,
- Abstract要約: MARS6は、高速かつ表現力のあるTSのための堅牢なエンコーダデコーダトランスである。
新しい音声トークンは、わずか12Hzの速度で処理され、長文の効率的なモデリングを可能にする。
本稿では,TTS出力品質と参照話者クローニング能力を比較し,客観的および主観的評価を行った。
- 参考スコア(独自算出の注目度): 17.58674979799923
- License:
- Abstract: Codec-based text-to-speech (TTS) models have shown impressive quality with zero-shot voice cloning abilities. However, they often struggle with more expressive references or complex text inputs. We present MARS6, a robust encoder-decoder transformer for rapid, expressive TTS. MARS6 is built on recent improvements in spoken language modelling. Utilizing a hierarchical setup for its decoder, new speech tokens are processed at a rate of only 12 Hz, enabling efficient modelling of long-form text while retaining reconstruction quality. We combine several recent training and inference techniques to reduce repetitive generation and improve output stability and quality. This enables the 70M-parameter MARS6 to achieve similar performance to models many times larger. We show this in objective and subjective evaluations, comparing TTS output quality and reference speaker cloning ability. Project page: https://camb-ai.github.io/mars6-turbo/
- Abstract(参考訳): Codec-based text-to-speech (TTS) モデルは、ゼロショット音声クローン機能を備えた印象的な品質を示している。
しかし、より表現力のある参照や複雑なテキスト入力に苦しむことが多い。
高速かつ表現力のあるTSのためのロバストエンコーダデコーダであるMARS6を提案する。
MARS6は、最近の音声言語モデリングの改善の上に構築されている。
復号器の階層的設定を利用して、新しい音声トークンをわずか12Hzの速度で処理し、復元品質を維持しながら、長文の効率的なモデリングを可能にする。
繰り返し生成を減らし、出力安定性と品質を向上させるために、最近のトレーニングと推論技術を組み合わせています。
これにより、70MパラメーターのMARS6は、モデルよりも何倍も大きな性能を達成できる。
本稿では,TTS出力品質と参照話者クローニング能力を比較し,客観的および主観的評価を行った。
プロジェクトページ: https://camb-ai.github.io/mars6-turbo/
関連論文リスト
- Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
実音声特徴と生成音声特徴を条件付きで識別するトランスフォーマーエンコーダデコーダアーキテクチャを提案する。
我々は、FastSpeech2音響モデルに適用し、大規模マルチスピーカーデータセットであるLibriheavyのトレーニングを行うことにより、新しい対角訓練手法を導入する。
本モデルは,音声品質と話者類似度の観点から,ベースラインに対する改善を実現する。
論文 参考訳(メタデータ) (2024-08-28T16:30:41Z) - TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers [8.485772660435464]
我々は,新しいニューラルLM,すなわちTacoLMを導入する。
TacoLMは、トレーニングと推論効率を改善するために、ゲートアテンションメカニズムを導入している。
TacoLMは、VALL-Eと比較して、単語エラー率、話者類似度、平均評価スコアが90%少なく、5.2倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-06-22T06:39:52Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - Small-E: Small Language Model with Linear Attention for Efficient Speech Synthesis [7.865191493201841]
言語モデルを用いたテキスト音声合成(TTS)の最近の進歩は、自然性やゼロショット音声のクローニングの実現において顕著な能力を示した。
本稿では,リピートやスキップの問題を緩和する特別なクロスアテンション機構を導入し,トランスフォーマーを新たなアーキテクチャに置き換えることを提案する。
我々のアーキテクチャは、長いサンプルで効率的に訓練し、同等の大きさのベースラインに対して最先端のゼロショット音声クローンを実現することができる。
論文 参考訳(メタデータ) (2024-06-06T19:48:17Z) - Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
我々は,コンパクトだが高性能な会話型TSモデルを提供するPhemeモデルシリーズを紹介する。
小規模の会話データで効率的にトレーニングでき、データ要求を10倍に削減できるが、自動回帰的TSモデルの品質にマッチする。
論文 参考訳(メタデータ) (2024-01-05T14:47:20Z) - TextrolSpeech: A Text Style Control Speech Corpus With Codec Language
Text-to-Speech Models [51.529485094900934]
リッチテキスト属性を付加した最初の大規模音声感情データセットであるTextrolSpeechを提案する。
本稿では,GPTモデルを利用した多段階プロンプトプログラミング手法を提案する。
そこで我々は,より多様なスタイルで音声を生成する必要性に対処するため,Salleと呼ばれる効率的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T09:06:32Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - EfficientSpeech: An On-Device Text to Speech Model [15.118059441365343]
State of the Art (SOTA) Neural Text to Speech (TTS)モデルでは、自然な音声合成音声を生成することができる。
本研究では,ARM CPU上で音声をリアルタイムに合成するEfficientSpeechという,効率的なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T10:28:41Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z) - MultiSpeech: Multi-Speaker Text to Speech with Transformer [145.56725956639232]
Transformer-based text to speech (TTS)モデル(Transformer TTSciteli 2019neural, FastSpeechciteren 2019fastspeech)は、RNNベースのモデルよりもトレーニングと推論効率の利点を示している。
我々はMultiSpeechと呼ばれる堅牢で高品質なマルチスピーカトランスフォーマーTSシステムを開発した。
論文 参考訳(メタデータ) (2020-06-08T15:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。