論文の概要: Identity-aware Feature Decoupling Learning for Clothing-change Person Re-identification
- arxiv url: http://arxiv.org/abs/2501.05851v1
- Date: Fri, 10 Jan 2025 10:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:26.785874
- Title: Identity-aware Feature Decoupling Learning for Clothing-change Person Re-identification
- Title(参考訳): 着替え型人物再識別のためのアイデンティティ対応特徴デカップリング学習
- Authors: Haoxuan Xu, Bo Li, Guanglin Niu,
- Abstract要約: アイデンティティ関連の特徴を抽出するためのIFD(Identity-Aware Feature Decoupling)学習フレームワークを提案する。
IFDはメインストリームとアテンションストリームで構成される二重ストリームアーキテクチャを利用する。
そこで本研究では,衣服関連領域の特徴を正規化するために,メインストリーム固有の衣服バイアス低減モジュールを提案する。
- 参考スコア(独自算出の注目度): 9.174737809840416
- License:
- Abstract: Clothing-change person re-identification (CC Re-ID) has attracted increasing attention in recent years due to its application prospect. Most existing works struggle to adequately extract the ID-related information from the original RGB images. In this paper, we propose an Identity-aware Feature Decoupling (IFD) learning framework to mine identity-related features. Particularly, IFD exploits a dual stream architecture that consists of a main stream and an attention stream. The attention stream takes the clothing-masked images as inputs and derives the identity attention weights for effectively transferring the spatial knowledge to the main stream and highlighting the regions with abundant identity-related information. To eliminate the semantic gap between the inputs of two streams, we propose a clothing bias diminishing module specific to the main stream to regularize the features of clothing-relevant regions. Extensive experimental results demonstrate that our framework outperforms other baseline models on several widely-used CC Re-ID datasets.
- Abstract(参考訳): 近年,衣服交換者再識別(CC Re-ID)が注目されている。
既存の作業の多くは、元のRGB画像からID関連情報を適切に抽出するのに苦労している。
本稿では,アイデンティティを意識した特徴分離(IFD)学習フレームワークを提案する。
特にIFDは、メインストリームとアテンションストリームで構成される二重ストリームアーキテクチャを利用する。
注目ストリームは、着飾った画像を入力として取り出し、空間知識をメインストリームに効果的に転送し、その領域を豊富なアイデンティティ関連情報でハイライトするアイデンティティ注意重みを導出する。
そこで本研究では,2つのストリームの入力間の意味的ギャップを解消するために,メインストリーム特有の衣服バイアス低減モジュールを提案し,衣服関連領域の特徴を規則化する。
我々のフレームワークは、広く使われているCC Re-IDデータセットにおいて、他のベースラインモデルよりも優れていることを示す。
関連論文リスト
- See What You Seek: Semantic Contextual Integration for Cloth-Changing Person Re-Identification [16.845045499676793]
衣服交換者再識別(CC-ReID)は、衣服の変化にもかかわらず、複数の監視カメラで個人をマッチングすることを目的としている。
既存の方法は通常、衣服の変化の影響を緩和したり、ID関連機能を強化することに重点を置いている。
本稿では,CC-ReIDのための新しいプロンプト学習フレームワークSemantic Contextual Integration(SCI)を提案する。
論文 参考訳(メタデータ) (2024-12-02T10:11:16Z) - Content and Salient Semantics Collaboration for Cloth-Changing Person Re-Identification [74.10897798660314]
衣服を交換する人の再識別は、重複しないカメラで同じ人の衣服の変化を認識することを目的としている。
本稿では、並列間セマンティクスの相互作用と洗練を容易にするコンテンツ・サリアンセマンティクス協調フレームワークを提案する。
我々のフレームワークはシンプルだが有効であり、重要な設計はセマンティックス・マイニング・アンド・リファインメント(SMR)モジュールである。
論文 参考訳(メタデータ) (2024-05-26T15:17:28Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Identity-aware Dual-constraint Network for Cloth-Changing Person Re-identification [13.709863134725335]
CC-ReID(CC-Changing Person Re-Identification)は、歩行者が着替えを行うより現実的な監視シナリオにおいて、対象者を正確に識別することを目的としている。
大きな進歩にもかかわらず、既存のCC-ReIDデータセットの限られた布質変化トレーニングサンプルは、モデルが布質非関連の特徴を適切に学習することを妨げている。
本稿では,CC-ReIDタスクのためのID-Aware Dual-Constraint Network (IDNet)を提案する。
論文 参考訳(メタデータ) (2024-03-13T05:46:36Z) - HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection [60.63915939982923]
顔の身元特定は、身元保護問題を解決するための実践的な方法である。
既存の顔の特定方法にはいくつかの問題がある。
これらの問題に対処するために,HFORD(High-Fidelity and Occlusion-Robust De-identification)法を提案する。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - Semantic-aware Consistency Network for Cloth-changing Person
Re-Identification [8.885551377703944]
本稿ではセマンティック・アウェア・コンシスタンス・ネットワーク(SCNet)を紹介し,アイデンティティに関連するセマンティックな特徴を学習する。
衣服領域の画素を消去することにより,黒衣画像を生成する。
さらに、高レベルのアイデンティティ関連セマンティック特徴の学習を容易にするために、セマンティック一貫性損失を設計する。
論文 参考訳(メタデータ) (2023-08-27T14:07:57Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
補助的なアノテーションやデータなしに両方の制約に対処するために,新しいFIne-fine Representation and Recomposition (FIRe$2$) フレームワークを提案する。
FIRe$2$は、広く使われている5つのRe-IDベンチマークで最先端のパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2023-08-21T12:59:48Z) - Identity-Guided Collaborative Learning for Cloth-Changing Person
Reidentification [29.200286257496714]
着替え型ReIDのための新しいID誘導協調学習手法(IGCL)を提案する。
まず,衣服情報による干渉を合理的に低減するために,新しい衣服注意ストリームを設計する。
次に,人間のセマンティック・アテンションとボディー・ジグソー・ストリームを提案し,人間のセマンティック・情報を強調し,同じアイデンティティの異なるポーズをシミュレートする。
第3に、歩行者のアイデンティティ強化ストリームがさらに提案され、アイデンティティの重要性を高め、より好ましいアイデンティティロバストな特徴を抽出する。
論文 参考訳(メタデータ) (2023-04-10T06:05:54Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - Cloth-Changing Person Re-identification from A Single Image with Gait
Prediction and Regularization [65.50321170655225]
本稿では,画像レイドモデルを用いて布非依存表現を学習するための補助タスクとして,歩行認識を導入する。
画像ベースのCloth-Changing ReIDベンチマーク(例えば、LTCC、PRCC、Real28、VC-Clothes)の実験は、GI-ReIDが最先端技術に対して好適に動作することを示した。
論文 参考訳(メタデータ) (2021-03-29T12:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。