論文の概要: Identity-Guided Collaborative Learning for Cloth-Changing Person
Reidentification
- arxiv url: http://arxiv.org/abs/2304.04400v2
- Date: Fri, 17 Nov 2023 08:49:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 20:02:27.809042
- Title: Identity-Guided Collaborative Learning for Cloth-Changing Person
Reidentification
- Title(参考訳): 衣服交換者再識別のためのアイデンティティガイド型協調学習
- Authors: Zan Gao, Shenxun Wei, Weili Guan, Lei Zhu, Meng Wang, Shenyong Chen
- Abstract要約: 着替え型ReIDのための新しいID誘導協調学習手法(IGCL)を提案する。
まず,衣服情報による干渉を合理的に低減するために,新しい衣服注意ストリームを設計する。
次に,人間のセマンティック・アテンションとボディー・ジグソー・ストリームを提案し,人間のセマンティック・情報を強調し,同じアイデンティティの異なるポーズをシミュレートする。
第3に、歩行者のアイデンティティ強化ストリームがさらに提案され、アイデンティティの重要性を高め、より好ましいアイデンティティロバストな特徴を抽出する。
- 参考スコア(独自算出の注目度): 29.200286257496714
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cloth-changing person reidentification (ReID) is a newly emerging research
topic that is aimed at addressing the issues of large feature variations due to
cloth-changing and pedestrian view/pose changes. Although significant progress
has been achieved by introducing extra information (e.g., human contour
sketching information, human body keypoints, and 3D human information),
cloth-changing person ReID is still challenging due to impressionable
pedestrian representations. Moreover, human semantic information and pedestrian
identity information are not fully explored. To solve these issues, we propose
a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing
person ReID, where the human semantic is fully utilized and the identity is
unchangeable to guide collaborative learning. First, we design a novel clothing
attention degradation stream to reasonably reduce the interference caused by
clothing information where clothing attention and mid-level collaborative
learning are employed. Second, we propose a human semantic attention and body
jigsaw stream to highlight the human semantic information and simulate
different poses of the same identity. In this way, the extraction features not
only focus on human semantic information that is unrelated to the background
but also are suitable for pedestrian pose variations. Moreover, a pedestrian
identity enhancement stream is further proposed to enhance the identity
importance and extract more favorable identity robust features. Most
importantly, all these streams are jointly explored in an end-to-end unified
framework, and the identity is utilized to guide the optimization. Extensive
experiments on five public clothing person ReID datasets demonstrate that the
proposed IGCL significantly outperforms SOTA methods and that the extracted
feature is more robust, discriminative, and clothing-irrelevant.
- Abstract(参考訳): 衣服交換者再識別(ReID)は,布地や歩行者の視界・場所の変化による大きな特徴変化の問題に対処することを目的とした,新たな研究課題である。
余分な情報(例えば、人間の輪郭スケッチ情報、人体キーポイント、および3D人体情報)を導入することで大きな進歩を遂げてきたが、印象的な歩行者表現のため、着替え人ReIDは依然として困難である。
また、人間の意味情報や歩行者の身元情報も十分に検討されていない。
これらの課題を解決するために,人間のセマンティクスを十分に活用し,そのアイデンティティを変更不能にし,協調学習をガイドする,新しいID誘導型協調学習手法(IGCL)を提案する。
まず,衣服の注意と中級協調学習を取り入れた衣服情報による干渉を合理的に低減するために,新しい衣服注意劣化ストリームを設計する。
第2に,人間の意味情報を強調し,同一人物の異なるポーズをシミュレートするヒューマンセマンティクス・アテンションとボディ・ジグソート・ストリームを提案する。
このようにして、抽出機能は、背景と無関係な人間の意味情報だけでなく、歩行者のポーズのバリエーションにも適している。
さらに、歩行者のアイデンティティ強化ストリームを提案し、アイデンティティの重要性を高め、より好ましいアイデンティティロバストな特徴を抽出する。
最も重要なことは、これらのストリームはすべてエンドツーエンドの統一フレームワークで共同で探索され、そのIDを使用して最適化を導くことである。
5人の一般衣料者のReIDデータセットに対する大規模な実験により、提案したIGCLはSOTA法を著しく上回り、抽出された特徴はより堅牢で、差別的で、衣服に無関係であることが示された。
関連論文リスト
- Disentangled Representations for Short-Term and Long-Term Person Re-Identification [33.76874948187976]
アイデンティティシャッフルGAN(Identity shuffle GAN:IS-GAN)と呼ばれる新たな生成対向ネットワークを提案する。
それは、アイデンティティシャッフル技術によって、個人画像からアイデンティティ関連および非関連の特徴を解き放つ。
実験により,IS-GANの有効性が検証され,標準reIDベンチマークにおける最先端性能が示された。
論文 参考訳(メタデータ) (2024-09-09T02:09:49Z) - Content and Salient Semantics Collaboration for Cloth-Changing Person Re-Identification [74.10897798660314]
衣服を交換する人の再識別は、重複しないカメラで同じ人の衣服の変化を認識することを目的としている。
本稿では、並列間セマンティクスの相互作用と洗練を容易にするコンテンツ・サリアンセマンティクス協調フレームワークを提案する。
我々のフレームワークはシンプルだが有効であり、重要な設計はセマンティックス・マイニング・アンド・リファインメント(SMR)モジュールである。
論文 参考訳(メタデータ) (2024-05-26T15:17:28Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Body Part-Based Representation Learning for Occluded Person
Re-Identification [102.27216744301356]
隠蔽人物再識別(ReID)とは,隠蔽人物画像と包括的人物画像とのマッチングを目的とした人物検索タスクである。
パートベースの手法は、微細な情報を提供し、部分的に見える人間の体を表現するのに適しているため、有益であることが示されている。
本稿では,BPBreIDという身体部分に基づくReIDモデルを提案する。
論文 参考訳(メタデータ) (2022-11-07T16:48:41Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - A Semantic-aware Attention and Visual Shielding Network for
Cloth-changing Person Re-identification [29.026249268566303]
衣服交換者再識別(ReID)は,衣服が変更された歩行者を回収することを目的とした,新たな研究課題である。
異なる服装の人間の外見は大きなバリエーションを示すため、差別的かつ堅牢な特徴表現を抽出する既存のアプローチは非常に困難である。
本研究は, 着替え型ReIDのための新しい意味認識・視覚遮蔽ネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-18T05:38:37Z) - Video Person Re-identification using Attribute-enhanced Features [49.68392018281875]
本稿では属性支援型ビデオ人物Re-IDのためのAttribute Salience Assisted Network (ASA-Net) という新しいネットワークアーキテクチャを提案する。
対象を背景からよりよく分離するために,ハイレベルな属性ではなく,中程度の属性から視覚的注意を学習することを提案する。
論文 参考訳(メタデータ) (2021-08-16T07:41:27Z) - Multigranular Visual-Semantic Embedding for Cloth-Changing Person
Re-identification [38.7806002518266]
本研究は, 布を交換するReIDのための新しいビジュアル・セマンティック・埋め込み・アルゴリズム(MVSE)を提案する。
衣服の変化のある人を完全に表現するために、多粒性特徴表現スキーム(MGR)を採用し、その後、布脱感ネットワーク(CDN)を設計する。
人的属性の整合に使用される視覚意味情報を得るために,部分意味整合ネットワーク(PSA)を提案する。
論文 参考訳(メタデータ) (2021-08-10T09:14:44Z) - Person image generation with semantic attention network for person
re-identification [9.30413920076019]
本稿では,意味的注意ネットワークと呼ばれる新しい人物のポーズ誘導画像生成手法を提案する。
ネットワークはいくつかのセマンティックアテンションブロックで構成されており、各ブロックはポーズコードと衣服のテクスチャを保存および更新する。
他の方法と比較して、我々のネットワークはより優れた身体形状を特徴付けることができ、同時に衣服の属性を保持することができる。
論文 参考訳(メタデータ) (2020-08-18T12:18:51Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
本稿では,カメラごとの個人識別アノテーションに基づく新しい人物識別パラダイムを提案する。
これにより、最も時間がかかり、面倒なカメラ間IDラベリングプロセスがなくなる。
MATE(Multi-tAsk mulTi-labEl)Deep Learning method for intra-Camera Supervised (ICS) person re-id。
論文 参考訳(メタデータ) (2020-02-12T15:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。