Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2501.05906v1
- Date: Fri, 10 Jan 2025 12:07:00 GMT
- Title: Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms
- Authors: Junyong Lee, JeiHee Cho, Shiho Kim,
- Abstract summary: We introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical, inspired by Model-Agnostic Meta-Learning (MAML) technique.
Our framework features a classical neural network, called Learner, which interacts with a PQC using the output of Learner as an initial parameter.
In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged.
- Score: 4.525216077859531
- License:
- Abstract: In the Noisy Intermediate-Scale Quantum (NISQ) era, using variational quantum algorithms (VQAs) to solve optimization problems has become a key application. However, these algorithms face significant challenges, such as choosing an effective initial set of parameters and the limited quantum processing time that restricts the number of optimization iterations. In this study, we introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical optimizer, inspired by Model-Agnostic Meta-Learning (MAML) technique. This approach aim to achieve better parameter initialization that ensures fast convergence. Our framework features a classical neural network, called Learner}, which interacts with a PQC using the output of Learner as an initial parameter. During the pre-training phase, Learner is trained with a meta-objective based on the quantum circuit cost function. In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged. This method is highly adaptable and is effectively extended to various Hamiltonian optimization problems. We validate our approach through experiments, including distribution function mapping and optimization of the Heisenberg XYZ Hamiltonian. The result implies that the Learner successfully estimates initial parameters that generalize across the problem space, enabling fast adaptation.
Related papers
- A coherent approach to quantum-classical optimization [0.0]
Hybrid quantum-classical optimization techniques have been shown to allow for the reduction of quantum computational resources.
We identify the coherence entropy as a crucial metric in determining the suitability of quantum states.
We propose a quantum-classical optimization protocol that significantly improves on previous approaches for such tasks.
arXiv Detail & Related papers (2024-09-20T22:22:53Z) - A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
variational quantum algorithms (VQAs) are a promising family of hybrid quantum-classical methods tailored to cope with the limited capability of near-term quantum hardware.
We show that leveraging regular parameter patterns deeply affects the decision-tree structure and allows for a flexible and noise-resilient optimization strategy.
arXiv Detail & Related papers (2024-08-22T18:00:02Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
We introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm.
VQASC requires optimization of fewer parameters than the system size, N, traditionally required in classical problems.
We present numerical results from both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-08T17:54:42Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
We tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks.
We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA)
The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2022-06-20T18:57:50Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.