A Brain Age Residual Biomarker (BARB): Leveraging MRI-Based Models to Detect Latent Health Conditions in U.S. Veterans
- URL: http://arxiv.org/abs/2501.05970v1
- Date: Fri, 10 Jan 2025 13:56:03 GMT
- Title: A Brain Age Residual Biomarker (BARB): Leveraging MRI-Based Models to Detect Latent Health Conditions in U.S. Veterans
- Authors: Arthur Bousquet, Sugata Banerji, Mark F. Conneely, Shahrzad Jamshidi,
- Abstract summary: Age prediction using brain imaging, such as MRIs, has achieved promising results.
We developed a brain age predictive model using a dataset of 1,220 U.S. veterans.
Residual analysis was performed to assess its potential as a biomarker for five ICD-coded conditions.
- Score: 0.0
- License:
- Abstract: Age prediction using brain imaging, such as MRIs, has achieved promising results, with several studies identifying the model's residual as a potential biomarker for chronic disease states. In this study, we developed a brain age predictive model using a dataset of 1,220 U.S. veterans (18--80 years) and convolutional neural networks (CNNs) trained on two-dimensional slices of axial T2-weighted fast spin-echo and T2-weighted fluid attenuated inversion recovery MRI images. The model, incorporating a degree-3 polynomial ensemble, achieved an $R^{2}$ of 0.816 on the testing set. Images were acquired at the level of the anterior commissure and the frontal horns of the lateral ventricles. Residual analysis was performed to assess its potential as a biomarker for five ICD-coded conditions: hypertension (HTN), diabetes mellitus (DM), mild traumatic brain injury (mTBI), illicit substance abuse/dependence (SAD), and alcohol abuse/dependence (AAD). Residuals grouped by the number of ICD-coded conditions demonstrated different trends that were statistically significant ($p = 0.002$), suggesting a relationship between disease states and predicted brain age. This association was particularly pronounced in patients over 49 years, where negative residuals (indicating advanced brain aging) correlated with the presence of multiple ICD codes. These findings support the potential of residuals as biomarkers for detecting latent health conditions.
Related papers
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - A Surface-Based Federated Chow Test Model for Integrating APOE Status,
Tau Deposition Measure, and Hippocampal Surface Morphometry [18.36168858563601]
Alzheimer's Disease (AD) is the most common type of age-related dementia, affecting 6.2 million people aged 65 or older according to CDC data.
It is commonly agreed that discovering an effective AD diagnosis biomarker could have enormous public health benefits.
arXiv Detail & Related papers (2023-03-31T21:17:54Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Temporally Adjustable Longitudinal Fluid-Attenuated Inversion Recovery
MRI Estimation / Synthesis for Multiple Sclerosis [0.0]
Multiple Sclerosis (MS) is a chronic progressive neurological disease characterized by the development of lesions in the white matter of the brain.
FLAIR brain magnetic resonance imaging (MRI) provides superior visualization and characterization of MS lesions, relative to other MRI modalities.
Longitudinal brain FLAIR MRI in MS, involving repetitively imaging a patient over time, provides helpful information for clinicians towards monitoring disease progression.
Predicting future whole brain MRI examinations with variable time lag has only been attempted in limited applications, such as healthy aging and structural degeneration in Alzheimer's Disease.
arXiv Detail & Related papers (2022-09-09T12:42:00Z) - Accelerated functional brain aging in major depressive disorder:
evidence from a large scale fMRI analysis of Chinese participants [8.184714897613166]
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality.
Recent studies reveal that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD.
Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China.
arXiv Detail & Related papers (2022-05-08T09:26:46Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Automatic Classification of Neuromuscular Diseases in Children Using
Photoacoustic Imaging [77.32032399775152]
Neuromuscular diseases (NMDs) cause a significant burden for both healthcare systems and society.
They can lead to severe progressive muscle weakness, muscle degeneration, contracture, deformity and progressive disability.
arXiv Detail & Related papers (2022-01-27T16:37:19Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.