Addressing speaker gender bias in large scale speech translation systems
- URL: http://arxiv.org/abs/2501.05989v1
- Date: Fri, 10 Jan 2025 14:20:46 GMT
- Title: Addressing speaker gender bias in large scale speech translation systems
- Authors: Shubham Bansal, Vikas Joshi, Harveen Chadha, Rupeshkumar Mehta, Jinyu Li,
- Abstract summary: This study addresses the issue of speaker gender bias in Speech Translation (ST) systems.
We employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner.
We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems.
- Score: 20.698663542717544
- License:
- Abstract: This study addresses the issue of speaker gender bias in Speech Translation (ST) systems, which can lead to offensive and inaccurate translations. The masculine bias often found in large-scale ST systems is typically perpetuated through training data derived from Machine Translation (MT) systems. Our approach involves two key steps. First, we employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner. Second, we fine-tune the ST model with the corrected data, enabling the model to generate gender-specific translations directly from audio cues, without the need for explicit gender input. Additionally, we propose a three-mode fine-tuned model for scenarios where the speaker's gender is either predefined or should not be inferred from speech cues. We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems, such as Seamless M4T and Canary, on the MuST-SHE test set.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - Prosody in Cascade and Direct Speech-to-Text Translation: a case study
on Korean Wh-Phrases [79.07111754406841]
This work proposes using contrastive evaluation to measure the ability of direct S2TT systems to disambiguate utterances where prosody plays a crucial role.
Our results clearly demonstrate the value of direct translation systems over cascade translation models.
arXiv Detail & Related papers (2024-02-01T14:46:35Z) - Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection [23.993869026482415]
We propose the first inference-time solution to control speaker-related gender inflections in speech translation.
Our solution partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs.
arXiv Detail & Related papers (2023-10-24T11:55:16Z) - How To Build Competitive Multi-gender Speech Translation Models For
Controlling Speaker Gender Translation [21.125217707038356]
When translating from notional gender languages into grammatical gender languages, the generated translation requires explicit gender assignments for various words, including those referring to the speaker.
To avoid such biased and not inclusive behaviors, the gender assignment of speaker-related expressions should be guided by externally-provided metadata about the speaker's gender.
This paper aims to achieve the same results by integrating the speaker's gender metadata into a single "multi-gender" neural ST model, easier to maintain.
arXiv Detail & Related papers (2023-10-23T17:21:32Z) - Speech-to-Speech Translation with Discrete-Unit-Based Style Transfer [53.72998363956454]
Direct speech-to-speech translation (S2ST) with discrete self-supervised representations has achieved remarkable accuracy.
The scarcity of high-quality speaker-parallel data poses a challenge for learning style transfer during translation.
We design an S2ST pipeline with style-transfer capability on the basis of discrete self-supervised speech representations and timbre units.
arXiv Detail & Related papers (2023-09-14T09:52:08Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques.
We propose a bias mitigation method based on a novel approach.
Gender-Aware Contrastive Learning, GACL, encodes contextual gender information into the representations of non-explicit gender words.
arXiv Detail & Related papers (2023-05-23T12:53:39Z) - Simple and Effective Unsupervised Speech Translation [68.25022245914363]
We study a simple and effective approach to build speech translation systems without labeled data.
We present an unsupervised domain adaptation technique for pre-trained speech models.
Experiments show that unsupervised speech-to-text translation outperforms the previous unsupervised state of the art.
arXiv Detail & Related papers (2022-10-18T22:26:13Z) - Breeding Gender-aware Direct Speech Translation Systems [14.955696163410254]
We show that gender-aware direct ST solutions can significantly outperform strong - but gender-unaware - direct ST models.
The translation of gender-marked words can increase up to 30 points in accuracy while preserving overall translation quality.
arXiv Detail & Related papers (2020-12-09T10:18:03Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z) - Reducing Gender Bias in Neural Machine Translation as a Domain
Adaptation Problem [21.44025591721678]
Training data for NLP tasks often exhibits gender bias in that fewer sentences refer to women than to men.
Recent WinoMT challenge set allows us to measure this effect directly.
We use transfer learning on a small set of trusted, gender-balanced examples.
arXiv Detail & Related papers (2020-04-09T11:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.