Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection
- URL: http://arxiv.org/abs/2310.15752v1
- Date: Tue, 24 Oct 2023 11:55:16 GMT
- Title: Integrating Language Models into Direct Speech Translation: An
Inference-Time Solution to Control Gender Inflection
- Authors: Dennis Fucci, Marco Gaido, Sara Papi, Mauro Cettolo, Matteo Negri,
Luisa Bentivogli
- Abstract summary: We propose the first inference-time solution to control speaker-related gender inflections in speech translation.
Our solution partially replaces the (biased) internal language model (LM) implicitly learned by the ST decoder with gender-specific external LMs.
- Score: 23.993869026482415
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: When translating words referring to the speaker, speech translation (ST)
systems should not resort to default masculine generics nor rely on potentially
misleading vocal traits. Rather, they should assign gender according to the
speakers' preference. The existing solutions to do so, though effective, are
hardly feasible in practice as they involve dedicated model re-training on
gender-labeled ST data. To overcome these limitations, we propose the first
inference-time solution to control speaker-related gender inflections in ST.
Our approach partially replaces the (biased) internal language model (LM)
implicitly learned by the ST decoder with gender-specific external LMs.
Experiments on en->es/fr/it show that our solution outperforms the base models
and the best training-time mitigation strategy by up to 31.0 and 1.6 points in
gender accuracy, respectively, for feminine forms. The gains are even larger
(up to 32.0 and 3.4) in the challenging condition where speakers' vocal traits
conflict with their gender.
Related papers
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Twists, Humps, and Pebbles: Multilingual Speech Recognition Models Exhibit Gender Performance Gaps [25.95711246919163]
Current automatic speech recognition (ASR) models are designed to be used across many languages and tasks without substantial changes.
Our study systematically evaluates the performance of two widely used multilingual ASR models on three datasets.
Our findings reveal clear gender disparities, with the advantaged group varying across languages and models.
arXiv Detail & Related papers (2024-02-28T00:24:29Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
Large Language Models (LLMs) can generate biased responses.
We propose an indirect probing framework based on conditional generation.
We explore three distinct strategies to disclose explicit and implicit gender bias in LLMs.
arXiv Detail & Related papers (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
Large Language Models (LLMs) can generate biased and toxic responses.
We propose a conditional text generation mechanism without the need for predefined gender phrases and stereotypes.
arXiv Detail & Related papers (2023-11-01T05:31:46Z) - How To Build Competitive Multi-gender Speech Translation Models For
Controlling Speaker Gender Translation [21.125217707038356]
When translating from notional gender languages into grammatical gender languages, the generated translation requires explicit gender assignments for various words, including those referring to the speaker.
To avoid such biased and not inclusive behaviors, the gender assignment of speaker-related expressions should be guided by externally-provided metadata about the speaker's gender.
This paper aims to achieve the same results by integrating the speaker's gender metadata into a single "multi-gender" neural ST model, easier to maintain.
arXiv Detail & Related papers (2023-10-23T17:21:32Z) - No Pitch Left Behind: Addressing Gender Unbalance in Automatic Speech
Recognition through Pitch Manipulation [20.731375136671605]
We propose a data augmentation technique that manipulates the fundamental frequency (f0) and formants.
This technique reduces the data unbalance among genders by simulating voices of the under-represented female speakers.
Experiments on spontaneous English speech show that our technique yields a relative WER improvement up to 9.87% for utterances by female speakers.
arXiv Detail & Related papers (2023-10-10T12:55:22Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
arXiv Detail & Related papers (2023-05-26T13:51:50Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
Forgetting information in the original training data may damage the model's downstream performance by a large margin.
We propose GEnder Equality Prompt (GEEP) to improve gender fairness of pre-trained models with less forgetting.
arXiv Detail & Related papers (2021-10-11T15:52:16Z) - Breeding Gender-aware Direct Speech Translation Systems [14.955696163410254]
We show that gender-aware direct ST solutions can significantly outperform strong - but gender-unaware - direct ST models.
The translation of gender-marked words can increase up to 30 points in accuracy while preserving overall translation quality.
arXiv Detail & Related papers (2020-12-09T10:18:03Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.