MSCViT: A Small-size ViT architecture with Multi-Scale Self-Attention Mechanism for Tiny Datasets
- URL: http://arxiv.org/abs/2501.06040v2
- Date: Tue, 14 Jan 2025 14:33:55 GMT
- Title: MSCViT: A Small-size ViT architecture with Multi-Scale Self-Attention Mechanism for Tiny Datasets
- Authors: Bowei Zhang, Yi Zhang,
- Abstract summary: Vision Transformer (ViT) has demonstrated significant potential in various vision tasks due to its strong ability in modelling long-range dependencies.
We present a small-size ViT architecture with multi-scale self-attention mechanism and convolution blocks to model different scales of attention.
Our model achieves an accuracy of 84.68% on CIFAR-100 with 14.0M parameters and 2.5 GFLOPs, without pre-training on large datasets.
- Score: 3.8601741392210434
- License:
- Abstract: Vision Transformer (ViT) has demonstrated significant potential in various vision tasks due to its strong ability in modelling long-range dependencies. However, such success is largely fueled by training on massive samples. In real applications, the large-scale datasets are not always available, and ViT performs worse than Convolutional Neural Networks (CNNs) if it is only trained on small scale dataset (called tiny dataset), since it requires large amount of training data to ensure its representational capacity. In this paper, a small-size ViT architecture with multi-scale self-attention mechanism and convolution blocks is presented (dubbed MSCViT) to model different scales of attention at each layer. Firstly, we introduced wavelet convolution, which selectively combines the high-frequency components obtained by frequency division with our convolution channel to extract local features. Then, a lightweight multi-head attention module is developed to reduce the number of tokens and computational costs. Finally, the positional encoding (PE) in the backbone is replaced by a local feature extraction module. Compared with the original ViT, it is parameter-efficient and is particularly suitable for tiny datasets. Extensive experiments have been conducted on tiny datasets, in which our model achieves an accuracy of 84.68% on CIFAR-100 with 14.0M parameters and 2.5 GFLOPs, without pre-training on large datasets.
Related papers
- Powerful Design of Small Vision Transformer on CIFAR10 [0.0]
Vision Transformers (ViTs) have demonstrated remarkable success on large-scale datasets, but their performance on smaller datasets often falls short of CNNs.
This paper explores the design and optimization of Tiny ViTs for small datasets, using CIFAR-10 as a benchmark.
arXiv Detail & Related papers (2025-01-07T00:41:34Z) - CTA-Net: A CNN-Transformer Aggregation Network for Improving Multi-Scale Feature Extraction [14.377544481394013]
CTA-Net combines CNNs and ViTs, with transformers capturing long-range dependencies and CNNs extracting localized features.
This integration enables efficient processing of detailed local and broader contextual information.
Experiments on small-scale datasets with fewer than 100,000 samples show that CTA-Net achieves superior performance.
arXiv Detail & Related papers (2024-10-15T09:27:26Z) - LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.
LiteNeXt is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).
arXiv Detail & Related papers (2024-04-04T01:59:19Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - Masked autoencoders are effective solution to transformer data-hungry [0.0]
Vision Transformers (ViTs) outperforms convolutional neural networks (CNNs) in several vision tasks with its global modeling capabilities.
ViT lacks the inductive bias inherent to convolution making it require a large amount of data for training.
Masked autoencoders (MAE) can make the transformer focus more on the image itself.
arXiv Detail & Related papers (2022-12-12T03:15:19Z) - How to Train Vision Transformer on Small-scale Datasets? [4.56717163175988]
In contrast to convolutional neural networks, Vision Transformer lacks inherent inductive biases.
We show that self-supervised inductive biases can be learned directly from small-scale datasets.
This allows to train these models without large-scale pre-training, changes to model architecture or loss functions.
arXiv Detail & Related papers (2022-10-13T17:59:19Z) - Bridging the Gap Between Vision Transformers and Convolutional Neural
Networks on Small Datasets [91.25055890980084]
There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets.
We propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases.
Our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters.
arXiv Detail & Related papers (2022-10-12T06:54:39Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Efficient Training of Visual Transformers with Small-Size Datasets [64.60765211331697]
Visual Transformers (VTs) are emerging as an architectural paradigm alternative to Convolutional networks (CNNs)
We show that, despite having a comparable accuracy when trained on ImageNet, their performance on smaller datasets can be largely different.
We propose a self-supervised task which can extract additional information from images with only a negligible computational overhead.
arXiv Detail & Related papers (2021-06-07T16:14:06Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.